Bio-Inspired Information Pathways: From Neuroscience to Neurotronics: Springer Series on Bio- and Neurosystems, cartea 16
Editat de Martin Ziegler, Thomas Mussenbrock, Hermann Kohlstedten Limba Engleză Paperback – 20 sep 2023
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 295.00 lei 38-44 zile | |
Springer International Publishing – 20 sep 2023 | 295.00 lei 38-44 zile | |
Hardback (1) | 408.94 lei 3-5 săpt. | |
Springer International Publishing – 20 sep 2023 | 408.94 lei 3-5 săpt. |
Preț: 295.00 lei
Preț vechi: 310.53 lei
-5% Nou
Puncte Express: 443
Preț estimativ în valută:
56.45€ • 59.20$ • 47.07£
56.45€ • 59.20$ • 47.07£
Carte tipărită la comandă
Livrare economică 04-10 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031367076
ISBN-10: 3031367073
Pagini: 433
Ilustrații: XIII, 433 p. 226 illus., 187 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:1st ed. 2024
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series on Bio- and Neurosystems
Locul publicării:Cham, Switzerland
ISBN-10: 3031367073
Pagini: 433
Ilustrații: XIII, 433 p. 226 illus., 187 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:1st ed. 2024
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series on Bio- and Neurosystems
Locul publicării:Cham, Switzerland
Cuprins
Matter & Mind Matter.- Neuromorphic circuits with redox-based memristive devices.- Redox-based bi-layer oxide metal memristive devices.- MemFlash – Floating Gate Transistors as Memristors.- Critical discussion of ex situ and in situ TEM measurements of memristive devices.- Modeling and Simulation of of Silver-based Filamentary Memristive Devices.- Bio-inspired, neuromorphic acoustic sensing.
Notă biografică
Martin Ziegler is a full professor and the Chair of Micro- and Nanoelectronic Systems at the Faculty of Electrical Engineering and Information Technology of the Technische Universität Ilmenau, Germany. He works in the field of neuromorphic engineering. His main research interests concern the transfer of biological learning and memory into electronic systems. For this purpose, he studies and applies memristive materials and devices, micro-electromechanical systems, and neuromorphic circuits.
Thomas Mussenbrock is a full professor and the Chair of Applied Electrodynamics and Plasma Technology in the Faculty of Electrical Engineering and Information Technology at Ruhr University Bochum, Germany. His primary research interests cover modeling and simulation of low-temperature plasmas and plasma processes. Further topics include transport phenomena at the nanoscale and nanoionic devices.
Hermann Kohlstedt isa full professor of Nanoelectronics at Kiel University, Germany. His research concerns the development of novel electronics device and computing primitives based on biological fundamentals. His topics span from thin film analytics, device fabrication and their electrical characterization.
Thomas Mussenbrock is a full professor and the Chair of Applied Electrodynamics and Plasma Technology in the Faculty of Electrical Engineering and Information Technology at Ruhr University Bochum, Germany. His primary research interests cover modeling and simulation of low-temperature plasmas and plasma processes. Further topics include transport phenomena at the nanoscale and nanoionic devices.
Hermann Kohlstedt isa full professor of Nanoelectronics at Kiel University, Germany. His research concerns the development of novel electronics device and computing primitives based on biological fundamentals. His topics span from thin film analytics, device fabrication and their electrical characterization.
Textul de pe ultima copertă
This open access book offers a timely and comprehensive review of the field of neurotronics. Gathering cutting-edge contributions from neuroscientists, biologists, psychologists, as well as physicists, microelectronics engineers and information scientists, it gives extensive information on fundamental information pathways in selected nervous systems. It also highlights their relevance as building blocks for novel computing architectures, such as bio-inspired electronic devices, neuromorphic architectures, memristive devices, adaptive sensors and emergent, pulsed-coupled oscillatory networks. All in all, this book offers a unique bridge between fundamental research in neuroscience, neural information processing, nonlinear dynamics, and self-organization, and advanced practical applications concerning the fabrication of hardware-oriented computing.
Caracteristici
This book is open access, which means that you have free and unlimited access Presents novel findings relating to neural pathways in various biological systems Discusses the latest advances in the fabrication of hybrid bioelectrical interfaces Covers research at the intersection of biology, information processing and engineering