BiOX-based Photocatalysts for Dual Applications: Water Treatment and Energy Storage
Editat de Tonni Agustiono Kurniawan, Kit Wayne Chewen Limba Engleză Paperback – iun 2025
Written by world-class experts in their respective fields, this book will be an excellent resource for postgraduate students and postdoctoral researchers and academics in chemical engineering, chemistry, physics, and environmental science doing research on advanced oxidation process (AOP); technicians working in research and development on different uses of BiOX-based material for photocatalytic applications; and waste specialists in the waste and energy industries.
- Features an extensive literature survey on energy production and storage, wastewater, and environmental cleaning based on laboratory studies in the body of knowledge
- Provides a comprehensive overview on fundamentals and applications of a wide range of emerging photocatalytic materials such as BiOX
- Covers insights about technological benefits, challenges, research direction, outlook, and perspectives of BiOX-based photocatalysts
Preț: 1084.34 lei
Preț vechi: 1191.58 lei
-9% Nou
Puncte Express: 1627
Preț estimativ în valută:
207.58€ • 213.60$ • 174.98£
207.58€ • 213.60$ • 174.98£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443238611
ISBN-10: 0443238618
Pagini: 360
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
ISBN-10: 0443238618
Pagini: 360
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
Cuprins
Section 1: How to synthesize BiOX (X=Cl, Br, I) photocatalysts?
1.1 Introduction of BiOX photocatalysts
1.2 Outlook of photocatalytic properties of BiOX
1.3 Controllable synthesis, growth mechanism, and application of BiOClxBr1-x
1.4 Hydrothermal synthesis of Bi5O7Br and photocatalytic activity under visible light
1.5 Synthesis of BiOCl thin film by electrochemical method for photocatalysis
1.6 Solvothermal synthesis of hierarchical Bi4O5I2
Section 2. Development strategies of self-assembling BixOyXz (X=Cl, Br, I) photocatalysts
2.1 Controllable growth and application of BiOClxBr1-x photocatalysis
2.2 Electronic structure and photocatalytic activity of BiOCl photocatalyst.
2.3 Ag-BiOBr-rGO photocatalyst for enhanced photodegradation
2.4 Fabrication of Bi24O31Br10 as a highly efficient photocatalyst
2.5 Bi7O9I3 microsheets for efficient photocatalytic degradation
2.6 BiOCl-g-C3N4 ultrathin heterostructure nanosheets
2.7 Bi3O4Cl single-crystalline nanosheets with high {001} facet
2.8 BiOCl/Bi24O31Cl10 heterojunctions via self-combustion
Section 3. Structural modification for sustainable and improved BiOX photocatalysts
3.1 BiOBr/Bi12O17Cl2 heterojunction
3.2 p-n BiOI@Bi5O7I heterojunction
3.3 Bi24O31Br10 nanosheets with controllable thickness
3.4 Intra-heterostructure BixOyClz nanophotocatalyst
3.5 Z-scheme Bi2MoO6/CdSe heterojunction
3.6 BiOI/TiO2 heterostructured nanofibers
3.7 Bi4O5Br2 photocatalyst with tunable conduction
Section 4. Moving towards BiOX-based photocatalysis for wastewater treatment
4.1 Bi12O15Cl6 photocatalyst for photodegradation of bisphenol A
4.2 Challenges and bottlenecks of BiOX in wastewater treatment
4.3 Emerging opportunities of BiOX in wastewater treatment
4.4 Ways forward for BiOX-based photocatalysts in water treatment
4.5 Feasibility of BiOX for photocatalytic degradation of organic pollutants
4.6 Applicability of BiOX for photocatalytic degradation of inorganic pollutants
4.7 State of the art of BiOX for aquatic environmental remediation
Section 5. Application of photocatalytic process for energy conversion/storage
5.1 Application of BiOX for photocatalysis production of H2
5.2 Utilization of BiOX for photocatalytic reduction of CO2
5.3 Defect engineering of BiOX- based photocatalysts for energy storage
5.4 BiOX-based 2D composites for solar energy harvesting
5.5 L-BIOX as a high-capacity anode for energy storage of Li ion batteries
5.6 Bi-based photocatalysts for energy storage applications
5.7 BiOX-based photoctalysts for water splitting
5.8 Bi4O5Br2 photocatalyst for CO2 photoreduction
5.9 Bi4O5Br2 for solar-driven conversion of CO2 into valuable fuels
5.10 State of the art of BiOX for removal of air pollutant
1.1 Introduction of BiOX photocatalysts
1.2 Outlook of photocatalytic properties of BiOX
1.3 Controllable synthesis, growth mechanism, and application of BiOClxBr1-x
1.4 Hydrothermal synthesis of Bi5O7Br and photocatalytic activity under visible light
1.5 Synthesis of BiOCl thin film by electrochemical method for photocatalysis
1.6 Solvothermal synthesis of hierarchical Bi4O5I2
Section 2. Development strategies of self-assembling BixOyXz (X=Cl, Br, I) photocatalysts
2.1 Controllable growth and application of BiOClxBr1-x photocatalysis
2.2 Electronic structure and photocatalytic activity of BiOCl photocatalyst.
2.3 Ag-BiOBr-rGO photocatalyst for enhanced photodegradation
2.4 Fabrication of Bi24O31Br10 as a highly efficient photocatalyst
2.5 Bi7O9I3 microsheets for efficient photocatalytic degradation
2.6 BiOCl-g-C3N4 ultrathin heterostructure nanosheets
2.7 Bi3O4Cl single-crystalline nanosheets with high {001} facet
2.8 BiOCl/Bi24O31Cl10 heterojunctions via self-combustion
Section 3. Structural modification for sustainable and improved BiOX photocatalysts
3.1 BiOBr/Bi12O17Cl2 heterojunction
3.2 p-n BiOI@Bi5O7I heterojunction
3.3 Bi24O31Br10 nanosheets with controllable thickness
3.4 Intra-heterostructure BixOyClz nanophotocatalyst
3.5 Z-scheme Bi2MoO6/CdSe heterojunction
3.6 BiOI/TiO2 heterostructured nanofibers
3.7 Bi4O5Br2 photocatalyst with tunable conduction
Section 4. Moving towards BiOX-based photocatalysis for wastewater treatment
4.1 Bi12O15Cl6 photocatalyst for photodegradation of bisphenol A
4.2 Challenges and bottlenecks of BiOX in wastewater treatment
4.3 Emerging opportunities of BiOX in wastewater treatment
4.4 Ways forward for BiOX-based photocatalysts in water treatment
4.5 Feasibility of BiOX for photocatalytic degradation of organic pollutants
4.6 Applicability of BiOX for photocatalytic degradation of inorganic pollutants
4.7 State of the art of BiOX for aquatic environmental remediation
Section 5. Application of photocatalytic process for energy conversion/storage
5.1 Application of BiOX for photocatalysis production of H2
5.2 Utilization of BiOX for photocatalytic reduction of CO2
5.3 Defect engineering of BiOX- based photocatalysts for energy storage
5.4 BiOX-based 2D composites for solar energy harvesting
5.5 L-BIOX as a high-capacity anode for energy storage of Li ion batteries
5.6 Bi-based photocatalysts for energy storage applications
5.7 BiOX-based photoctalysts for water splitting
5.8 Bi4O5Br2 photocatalyst for CO2 photoreduction
5.9 Bi4O5Br2 for solar-driven conversion of CO2 into valuable fuels
5.10 State of the art of BiOX for removal of air pollutant