Boundary Element Analysis in Computational Fracture Mechanics: Mechanics: Computational Mechanics, cartea 1
Autor T. a. Cruseen Limba Engleză Hardback – 30 iun 1988
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 919.97 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – oct 2011 | 919.97 lei 6-8 săpt. | |
Hardback (1) | 926.32 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 30 iun 1988 | 926.32 lei 6-8 săpt. |
Preț: 926.32 lei
Preț vechi: 1129.65 lei
-18% Nou
Puncte Express: 1389
Preț estimativ în valută:
177.28€ • 184.15$ • 147.26£
177.28€ • 184.15$ • 147.26£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789024736140
ISBN-10: 9024736145
Pagini: 180
Ilustrații: 180 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.45 kg
Ediția:1988
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mechanics: Computational Mechanics
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9024736145
Pagini: 180
Ilustrații: 180 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.45 kg
Ediția:1988
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mechanics: Computational Mechanics
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1.0 An Historical Perspective.- 1.1 Boundary Integral Equation Development.- 1.2 Boundary Formulations and Discretizations.- 1.3 Fracture Mechanics Problems.- References.- 2.0 Fracture Mechanics.- 2.1 Introduction.- 2.2 Some Definitions.- 2.3 Some Fundamental Results.- 2.4 Some Stress Intensity Factors.- References.- 3.0 Boundary-Integral Equation Formulation and Solution.- 3.1 Introduction.- 3.2 Governing Equations of Elasticity in Two and Three Dimensions.- 3.3 Fundamental Solutions.- 3.4 Two-Dimensional Anisotropic Fundamental Solution.- 3.5 Three-Dimensional Anisotropic Fundamental Solution.- 3.6 Somigliana Identities.- 3.7 Boundary-Integral Equations.- 3.8 Numerical Quadrature of the BIE.- References.- 4.0 BIE Modeling of Crack Surfaces.- 4.1 Introduction.- 4.2 Degeneration of the BIE for Co-Planar Surfaces.- 4.3 Multiregion BIE Applications.- 4.4 Strain Energy Based Crack Tip Modeling.- 4.5 Crack Surface Interpolations.- References.- 5.0 Green’s Function Formulation in Two Dimensions.- 5.1 Introduction.- 5.2 Formulation of the Anisotropic Green’s Function.- 5.3 Somigliana Identities for the Anisotropic Green’s Function Formulation.- 5.4 Linear Variation Boundary Element Implementation.- 5.5 Applications.- References.- 6.0 Elastoplastic Fracture Mechanics Analysis.- 6.1 Introduction.- 6.2 Fundamental Elastoplastic Relations.- 6.3 The Somigliana Identities in Three-Dimensional Elastoplasticity.- 6.4 The Somigliana Identities in Two-Dimensional Elastoplasticity.- 6.5 The Somigliana Identities in Two-Dimensional Elastoplastic Fracture Mechanics.- 6.6 Numerical Implementation of the Elastoplastic BIE Formulation.- 6.7 Numerical Results in Two-Dimensional Elastoplasticity.- References.- 7.0 Displacement Discontinuity Modeling of Cracks.- 7.1 Introduction.- 7.2Formulation of the Three-Dimensional Traction BIE for Flat Cracks.- 7.3 Formulation of the Two-Dimensional Traction BIE.- 7.4 Near Crack Tip Solution to BIE.- 7.5 Current Numerical Method.- 7.6 Numerical Results.- References.- 8.0 Two-Dimensional Weight Function Evaluation.- 8.1 Introduction.- 8.2 Formulation of the Weight Function BIE.- References.
Recenzii
`... a very valuable contribution to the literature which should be read by anyone with a serious interest in the boundary element method, and is essential reading for those applying the method to fracture mechanics.'
R.J. Feune, Engineering Computations, Fall 1988.
`The book is an excellent contribution to the title problem and is recommended to anyone contemplating numerical techniques for fracture problems.'
J.C.F. Telles, Zentralblatt für Mathematik und Ihre Grenzgebiete/Mathematical Abstracts, Vol. 648.
R.J. Feune, Engineering Computations, Fall 1988.
`The book is an excellent contribution to the title problem and is recommended to anyone contemplating numerical techniques for fracture problems.'
J.C.F. Telles, Zentralblatt für Mathematik und Ihre Grenzgebiete/Mathematical Abstracts, Vol. 648.