Cantitate/Preț
Produs

Brain-Computer Interfaces: An international assessment of research and development trends

Autor Theodore W. Berger, John K. Chapin, Greg A. Gerhardt, Dennis J. Mcfarland, Jose C. Principe, Walid V. Soussou, Dawn M. Taylor, Patrick A. Tresco
en Limba Engleză Paperback – 19 oct 2010
We have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep 1 abreast of the rest of the world in scientific matters. We must maintain our leadership. President Harry Truman spoke those words in 1950, in the aftermath of World War II and in the midst of the Cold War. Indeed, the scientific and engineering leadership of the United States and its allies in the twentieth century played key roles in the successful outcomes of both World War II and the Cold War, sparing the world the twin horrors of fascism and totalitarian communism, and fueling the economic prosperity that followed. Today, as the United States and its allies once again find themselves at war, President Truman’s words ring as true as they did a half-century ago. The goal set out in the Truman Administration of maintaining leadership in science has remained the policy of the U. S. Government to this day: Dr. John Marburger, the Director of the Office of Science and Technology (OSTP) in the Executive Office of the President, made remarks to that effect during his 2 confirmation hearings in October 2001. The United States needs metrics for measuring its success in meeting this goal of maintaining leadership in science and technology. That is one of the reasons that the National Science Foundation (NSF) and many other agencies of the U. S.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 70271 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 19 oct 2010 70271 lei  6-8 săpt.
Hardback (1) 71164 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 19 sep 2008 71164 lei  6-8 săpt.

Preț: 70271 lei

Preț vechi: 73969 lei
-5% Nou

Puncte Express: 1054

Preț estimativ în valută:
13447 14147$ 11134£

Carte tipărită la comandă

Livrare economică 14-28 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789048179602
ISBN-10: 9048179602
Pagini: 324
Ilustrații: XXXIX, 281 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of hardcover 1st ed. 2008
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

Sensor Technology.- The Biotic-Abiotic Interface.- BMI/BCI Modeling and Signal Processing.- Hardware Implementation.- Functional Electrical Stimulation and Rehabilitation Applications of BCIs.- Noninvasive Communication Systems.- Cognitive and Emotional Neuroprostheses.- Research Organization-Funding, Translation-Commercialization, and Education-Training Issues.

Recenzii

From the reviews:
"Brain–Computer Interfaces is an interesting and unique book … . The authors attempt not only to review the most important aspects of BCIs but also discuss future trends in BCIs and give an overview of the research of many leading laboratories in North America, Europe, Japan, and China. … Overall, this easy-to-follow book is written in a concise and reader-friendly style. I recommend this book to all researchers and students who have an interest in research related to BCIs." (Andrzej Cichocki, The Lancet, Vol. 8, September, 2009)

Notă biografică

Dr. Theodore W. Berger (Panel Chair) is the David Packard Professor of Engineering, Professor of Biomedical Engineering and Neuroscience, and Director of the Center for Neural Engineering at the University of Southern California. He received his PhD from Harvard University in 1976; his thesis work received the James McKeen Cattell Award from the New York Academy of Sciences. He conducted postdoctoral research at the University of California, Irvine, from 1977–1978 and was an Alfred P. Sloan Foundation Fellow at the Salk Institute from 1978–1979. Dr. Berger joined the Departments of Neuroscience and Psychiatry at the University of Pittsburgh in 1979, being promoted to full professor in 1987. During that time, he received a McKnight Foundation Scholar Award, twice received an NIMH Research Scientist Development Award, and was elected a Fellow of the American Association for the Advancement of Science. Since 1992, he has been Professor of Biomedical Engineering and Neurobiology at the University of Southern California, and was appointed the David Packard Chair of Engineering in 2003.
While at USC, Dr. Berger has received an NIMH Senior Scientist Award, was elected a Fellow of the American Institute for Medical and Biological Engineering in 1998, received a Person of the Year "Impact Award" by the AARP in 2004 for his work on neural prostheses, was a National Academy of Sciences International Scientist Lecturer in 2003, and an IEEE Distinguished Lecturer in 2004–2005. Dr. Berger was elected a Senior Member of the IEEE in 2005, and received a "Great Minds, Great Ideas" award from the EE Times in the same year. Dr. Berger is currently chair of an NIH study section that evaluates grants related to clinical neurophysiological, medical devices, and neural prosthetics. Dr. Berger became Director of the Center for Neural Engineering in 1997, an organization that helps to unite USC faculty with cross-disciplinary interests in neuroscience, engineering, andmedicine. He has published over 200 journal articles and book chapters, and is the coeditor of a book recently published by the MIT Press: Toward Replacement Parts for the Brain: Implantable Biomimetic Electronics as Neural Prostheses.
Dr. Berger’s research focuses on electrophysiological and theoretical studies of hippocampal neurons and circuits for the purpose of developing neural prostheses and biological-based pattern recognizers.

Textul de pe ultima copertă

Brain-computer interface (BCI) research deals with establishing communication pathways between the brain and external devices where such pathways do not otherwise exist. Throughout the world, such research is surprisingly extensive and expanding. BCI research is rapidly approaching a level of first-generation medical practice for use by individuals whose neural pathways are damaged, and use of BCI technologies is accelerating rapidly in nonmedical arenas of commerce as well, particularly in the gaming, automotive, and robotics industries. The technologies used for BCI purposes are cutting-edge, enabling, and synergistic in many interrelated arenas, including signal processing, neural tissue engineering, multiscale modeling, systems integration, and robotics.

This WTEC study gathered information on worldwide status and trends in BCI research to disseminate to government decisionmakers and the research community. The study reviewed and assessed the state of the art in sensor technology, the biotic-abiotic interface and biocompatibility, data analysis and modeling, hardware implementation, systems engineering, functional electrical stimulation, noninvasive communication systems, and cognitive and emotional neuroprostheses in academic research and industry. The study also compared the distinctly different foci, range, and investment levels of BCI research programs in the United States, Canada, China, Europe, and Japan.

Caracteristici

Provides a worldwide snapshot of current research and development trends in brain-computer interfaces, evaluated by a panel of experts based on dozens of visits to leading research institutions Gives a unique review of technical developments related to the unification that is rapidly taking place today among nanotechnology, biotechnology, information technology, and cognitive science Assesses the potential for revolutionary applications of these developments and their likely impact in improving the human condition Offers a wide variety of scholarly views on the likely societal impacts and policy implications of these developments and applications, including assessments of educational, economic, commercial, legal, ethical, political, and social implications