Catastrophe Theory: Second Edition
Autor Domencio Castrigiano, Sandra Hayesen Limba Engleză Paperback – 5 sep 2003
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 418.57 lei 6-8 săpt. | |
CRC Press – 5 sep 2003 | 418.57 lei 6-8 săpt. | |
Hardback (1) | 980.00 lei 6-8 săpt. | |
CRC Press – 28 aug 2019 | 980.00 lei 6-8 săpt. |
Preț: 418.57 lei
Preț vechi: 492.44 lei
-15% Nou
Puncte Express: 628
Preț estimativ în valută:
80.12€ • 84.01$ • 66.20£
80.12€ • 84.01$ • 66.20£
Carte tipărită la comandă
Livrare economică 30 ianuarie-13 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780813341255
ISBN-10: 0813341256
Pagini: 284
Dimensiuni: 152 x 229 x 16 mm
Greutate: 0.45 kg
Ediția:Revised.
Editura: CRC Press
Colecția CRC Press
ISBN-10: 0813341256
Pagini: 284
Dimensiuni: 152 x 229 x 16 mm
Greutate: 0.45 kg
Ediția:Revised.
Editura: CRC Press
Colecția CRC Press
Cuprins
Foreword, Preface to the First Edition, Preface to the Second Edition, 1 Nondegenerate Critical Points: The Morse Lemma, 2 The Fold and the Cusp, 3 Degenerate Critical Points: The Reduction Lemma, 4 Determinacy, 5 Codimension, 6 The Classification Theorem for Germs of Codimension at Most 4, 7 Unfoldings, 8 Transversality, 9 The Malgrange-Mather Preparation Theorem, 10 The Fundamental Theorem on Universal Unfoldings, 11 Genericity, 12 Stability, Appendix, References, Notation Index, Subject Index
Notă biografică
DOMENICO P. L. CASTRIGIANO is Professor of Mathematics at the Technical University of Munich, where his research interests focus on problems of mathematical physics, and include real analysis and measure theory on topological spaces., SANDRA A. HAYES is Professor of Mathematics at the Technical University of Munich. Her research interests include higher-dimensional complex dynamical systems and chaotic time series analysis.
Descriere
By investigating the phenomena of bifurcation and chaos, Catastrophe Theory proved to be fundamental to the understanding of qualitative dynamics. This fully revised second edition includes two new chapters treating genericity and stability of unfoldings.