Cantitate/Preț
Produs

Characterization of Laminated Safety Glass Interlayers: Thermorheology, Crystallinity and Viscoelasticity: Mechanik, Werkstoffe und Konstruktion im Bauwesen, cartea 66

Autor Miriam Schuster
en Limba Engleză Paperback – 20 noi 2022
Laminated safety glass enables the safe construction of transparent structures. The mechanical behaviour depends on the polymeric interlayer both in the intact and in the post fracture state. In the present work, the mechanical behaviour of ethylene vinyl acetate-based (EVA) and ionoplastic interlayers is investigated for the intact laminated safety glass condition. In particular, the influence of the semi-crystalline structure on the stiffness behaviour is studied with X-Ray Diffraction, Differential Scanning Calorimetry and Dynamic-Mechanical-Thermal-Analysis. The studies on the mechanical behaviour of the interlayer in the fractured laminated safety glass were carried out with polyvinyl butyral-based (PVB) interlayers. First, the temperature and frequency (time) dependent linearity limits are determined in Dynamic-Mechanical-Thermal-Analyses, second, the nonlinear viscoelastic material behaviour is investigated with tensile relaxation tests at different temperatures and strain levels.
Citește tot Restrânge

Din seria Mechanik, Werkstoffe und Konstruktion im Bauwesen

Preț: 78698 lei

Preț vechi: 95972 lei
-18% Nou

Puncte Express: 1180

Preț estimativ în valută:
15062 15664$ 12604£

Carte tipărită la comandă

Livrare economică 14-28 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783658398200
ISBN-10: 3658398205
Pagini: 341
Ilustrații: XXVI, 341 p. 162 illus., 129 illus. in color.
Dimensiuni: 168 x 240 mm
Greutate: 0.59 kg
Ediția:1st ed. 2023
Editura: Springer Fachmedien Wiesbaden
Colecția Springer Vieweg
Seria Mechanik, Werkstoffe und Konstruktion im Bauwesen

Locul publicării:Wiesbaden, Germany

Cuprins

Introduction.- Theoretical background.- General description of the experimental methods.- Investigation of the semicrystalline structure of EVA and ionoplastic interlayers.-  Identification of time-superposition principles for EVA and ionoplastic interlayers.- Determination of the linear viscoelastic behaviour and linearity limits for PVB.- Characterization of the nonlinear viscoelastic behaviour of PVB.- Application to engineering practice.- Summary and outlook Bibliography.- Appendix.- A Additional data.- B List of publications, presentations and workshops.

Notă biografică

Miriam Schuster, born in 1990 in Luxembourg, studied Civil Engineering from 2009 to 2014 at University of Luxembourg and TU Darmstadt. She focused and specialized on structural engineering. After working in the Luxembourgish engineering office Schroeder&Associés she returned to TU Darmstadt in February 2016 as a researcher in the Institute of Structural Mechanics and Design (ISM+D). In January 2022, she successfully defended her phd thesis with the topic “Characterization of laminated safety glass interlayers – Thermorheology, Crystallinity and Viscoelasticity”. Since then, she has been heading the glass and polymer unit of ISM+D as a postdoctoral researcher.

Textul de pe ultima copertă

Laminated safety glass enables the safe construction of transparent structures. The mechanical behaviour depends on the polymeric interlayer both in the intact and in the post fracture state. In the present work, the mechanical behaviour of ethylene vinyl acetate-based (EVA) and ionoplastic interlayers is investigated for the intact laminated safety glass condition. In particular, the influence of the semi-crystalline structure on the stiffness behaviour is studied with X-Ray Diffraction, Differential Scanning Calorimetry and Dynamic-Mechanical-Thermal-Analysis. The studies on the mechanical behaviour of the interlayer in the fractured laminated safety glass were carried out with polyvinyl butyral-based (PVB) interlayers. First, the temperature and frequency (time) dependent linearity limits are determined in Dynamic-Mechanical-Thermal-Analyses, second, the nonlinear viscoelastic material behaviour is investigated with tensile relaxation tests at different temperatures and strain levels.

Miriam Schuster, born in 1990 in Luxembourg, studied Civil Engineering from 2009 to 2014 at University of Luxembourg and TU Darmstadt. She focused and specialized on structural engineering. After working in the Luxembourgish engineering office Schroeder&Associés she returned to TU Darmstadt in February 2016 as a researcher in the Institute of Structural Mechanics and Design (ISM+D). In January 2022, she successfully defended her phd thesis with the topic “Characterization of laminated safety glass interlayers – Thermorheology, Crystallinity and Viscoelasticity”. Since then, she has been heading the glass and polymer unit of ISM+D as a postdoctoral researcher.

Caracteristici

Laminated safety glass enables the safe construction of transparent structures Investigation of the semicrystalline structure of EVA and ionoplastic interlayers Identification of time-superposition principles for EVA and ionoplastic interlayers