Cantitate/Preț
Produs

Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells

Editat de F.J. Alvarez-Leefmans, John M. Russell
en Limba Engleză Hardback – 30 mai 1990
This is a book about how Cl- crosses the cell membranes of nerve, muscle, and glial cells. Not so very many years ago, a pamphlet rather than book might have resulted from such an endeavor! One might ask why Cl-, the most abundant biological anion, attracted so little attention from investigators. The main reason was that the prevailing paradigm for cellular ion homeostasis in the 1950s and 1960s assigned Cl- a ther­ modynamically passive and unspecialized role. This view was particularly prominent among muscle and neuroscience investigators. In searching for reasons for such a negative (no pun intended) viewpoint, it seems to us that it stemmed from two key experimental observations. First, work on frog skeletal muscle showed that Cl- was passively distributed between the cytoplasm and the extracellular fluid. Second, work on Cl- transport in red blood cells confirmed that the Cl- transmembrane distribution was thermodynamically passive and, in addition, showed that Cl- crossed the mem­ brane extremely rapidly. This latter finding [for a long time interpreted as being the result of a high passive chloride electrical permeability(? CI)] made it quite likely that Cl- would remain at thermodynamic equilibrium. These two observations were gener­ alized and virtually all cells were thought to have a very high P Cl and a ther­ modynamically passive Cl- transmembrane distribution. These concepts can still be found in some physiology and neuroscience textbooks.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 120820 lei  6-8 săpt.
  Springer Us – 26 apr 2013 120820 lei  6-8 săpt.
Hardback (1) 121581 lei  6-8 săpt.
  Springer Us – 30 mai 1990 121581 lei  6-8 săpt.

Preț: 121581 lei

Preț vechi: 148268 lei
-18% Nou

Puncte Express: 1824

Preț estimativ în valută:
23275 23937$ 19309£

Carte tipărită la comandă

Livrare economică 20 februarie-06 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780306434266
ISBN-10: 0306434261
Pagini: 426
Ilustrații: XVIII, 426 p.
Dimensiuni: 178 x 254 x 25 mm
Greutate: 0.99 kg
Ediția:1990
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Descriere

This is a book about how Cl- crosses the cell membranes of nerve, muscle, and glial cells. Not so very many years ago, a pamphlet rather than book might have resulted from such an endeavor! One might ask why Cl-, the most abundant biological anion, attracted so little attention from investigators. The main reason was that the prevailing paradigm for cellular ion homeostasis in the 1950s and 1960s assigned Cl- a ther­ modynamically passive and unspecialized role. This view was particularly prominent among muscle and neuroscience investigators. In searching for reasons for such a negative (no pun intended) viewpoint, it seems to us that it stemmed from two key experimental observations. First, work on frog skeletal muscle showed that Cl- was passively distributed between the cytoplasm and the extracellular fluid. Second, work on Cl- transport in red blood cells confirmed that the Cl- transmembrane distribution was thermodynamically passive and, in addition, showed that Cl- crossed the mem­ brane extremely rapidly. This latter finding [for a long time interpreted as being the result of a high passive chloride electrical permeability(? CI)] made it quite likely that Cl- would remain at thermodynamic equilibrium. These two observations were gener­ alized and virtually all cells were thought to have a very high P Cl and a ther­ modynamically passive Cl- transmembrane distribution. These concepts can still be found in some physiology and neuroscience textbooks.

Cuprins

1. Methods for Measuring Chloride Transport across Nerve, Muscle, and Glial Cells.- 2. Principles of Cell Volume Regulation: Ion Flux Pathways and the Roles of Anions.- 3. Chloride Transport in the Squid Giant Axon.- 4. Intracellular Cl? Regulation and Synaptic Inhibition in Vertebrate and Invertebrate Neurons.- 5. Chloride Transport across Glial Membranes.- 6. Chloride Channels and Carriers in Cultured Glial Cells.- 7. Chloride Transport across the Sarcolemma of Vertebrate Smooth and Skeletal Muscle.- 8. Biophysical Aspects of GABA- and Glycine-Gated Cl? Channels in Mouse Cultured Spinal Neurons.- 9. GABA-Gated Cl? Currents and Their Regulation by Intracellular Free Ca2+.- 10. Pharmacology and Physiology of Cl? Conductances Activated by GABA in Cultured Mammalian Central Neurons.- 11. Acetylcholine-Activated Cl? Channels in Molluscan Nerve Cells.- 12. GABA-Activated Bicarbonate Conductance: Influence on EGABA and on Postsynaptic pH Regulation.- 13. Calcium-Dependent Chloride Currents in Vertebrate Central Neurons.- 14. Hyperpolarization-Activated Chloride Channels in Aplysia Neurons.- 15. The Voltage-Dependent Chloride Channel of Torpedo Electroplax: Intimations of Molecular Structure from Quirks of Single-Channel Function.- 16. Chloride Channels in Skeletal Muscle.