Classical Potential Theory: Springer Monographs in Mathematics
Autor David H. Armitage, Stephen J. Gardineren Limba Engleză Hardback – 27 oct 2000
The presentation is largely self-contained and is accessible to graduate students, the only prerequisites being a reasonable grounding in analysis and several variables calculus, and a first course in measure theory. The book will prove an essential reference to all those with an interest in potential theory and its applications.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 618.84 lei 6-8 săpt. | |
SPRINGER LONDON – 4 oct 2012 | 618.84 lei 6-8 săpt. | |
Hardback (1) | 624.98 lei 6-8 săpt. | |
SPRINGER LONDON – 27 oct 2000 | 624.98 lei 6-8 săpt. |
Din seria Springer Monographs in Mathematics
- Preț: 252.65 lei
- 18% Preț: 753.21 lei
- 24% Preț: 775.60 lei
- 20% Preț: 696.00 lei
- 18% Preț: 933.18 lei
- 20% Preț: 574.69 lei
- 20% Preț: 818.27 lei
- 18% Preț: 849.17 lei
- 24% Preț: 740.02 lei
- 24% Preț: 1598.57 lei
- Preț: 614.96 lei
- 18% Preț: 763.12 lei
- Preț: 381.51 lei
- 15% Preț: 626.27 lei
- 18% Preț: 1189.30 lei
- 15% Preț: 480.91 lei
- Preț: 376.90 lei
- 18% Preț: 1351.01 lei
- 18% Preț: 767.07 lei
- 18% Preț: 881.54 lei
- Preț: 382.08 lei
- 15% Preț: 632.39 lei
- 15% Preț: 450.15 lei
- 15% Preț: 623.55 lei
- Preț: 390.98 lei
- Preț: 375.23 lei
- 15% Preț: 559.21 lei
- 15% Preț: 619.15 lei
- 15% Preț: 623.24 lei
- 18% Preț: 868.34 lei
- 15% Preț: 628.61 lei
- 18% Preț: 867.72 lei
- 18% Preț: 872.90 lei
- 18% Preț: 859.69 lei
- 15% Preț: 634.59 lei
- 18% Preț: 771.92 lei
- 15% Preț: 636.32 lei
- 15% Preț: 622.17 lei
- Preț: 370.04 lei
- 15% Preț: 677.72 lei
- 18% Preț: 1200.85 lei
- Preț: 393.75 lei
- 18% Preț: 992.09 lei
- 18% Preț: 948.64 lei
- 15% Preț: 616.17 lei
- 15% Preț: 619.01 lei
- Preț: 374.13 lei
- 18% Preț: 928.76 lei
- 15% Preț: 624.36 lei
Preț: 624.98 lei
Preț vechi: 735.27 lei
-15% Nou
Puncte Express: 937
Preț estimativ în valută:
119.61€ • 126.19$ • 99.68£
119.61€ • 126.19$ • 99.68£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781852336189
ISBN-10: 1852336188
Pagini: 356
Ilustrații: XVI, 333 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.67 kg
Ediția:2001
Editura: SPRINGER LONDON
Colecția Springer
Seria Springer Monographs in Mathematics
Locul publicării:London, United Kingdom
ISBN-10: 1852336188
Pagini: 356
Ilustrații: XVI, 333 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.67 kg
Ediția:2001
Editura: SPRINGER LONDON
Colecția Springer
Seria Springer Monographs in Mathematics
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1. Harmonic Functions.- 1.1. Laplace’s equation.- 1.2. The mean value property.- 1.3. The Poisson integral for a ball.- 1.4. Harnack’s inequalities.- 1.5. Families of harmonic functions: convergence properties.- 1.6. The Kelvin transform.- 1.7. Harmonic functions on half-spaces.- 1.8. Real-analyticity of harmonic functions.- 1.9. Exercises.- 2. Harmonic Polynomials.- 2.1. Spaces of homogeneous polynomials.- 2.2. Another inner product on a space of polynomials.- 2.3. Axially symmetric harmonic polynomials.- 2.4. Polynomial expansions of harmonic functions.- 2.5. Laurent expansions of harmonic functions.- 2.6. Harmonic approximation.- 2.7. Harmonic polynomials and classical polynomials.- 2.8. Exercises.- 3. Subharmonic Functions.- 3.1. Elementary properties.- 3.2. Criteria for subharmonicity.- 3.3. Approximation of subharmonic functions by smooth ones.- 3.4. Convexity and subharmonicity.- 3.5. Mean values and subharmonicity.- 3.6. Harmonic majorants.- 3.7. Families of subharmonic functions: convergence properties.- 3.8. Exercises.- 4. Potentials.- 4.1. Green functions.- 4.2. Potentials.- 4.3. The distributional Laplacian.- 4.4. The Riesz decomposition.- 4.5. Continuity and smoothness properties.- 4.6. Classical boundary limit theorems.- 4.7. Exercises.- 5. Polar Sets and Capacity.- 5.1. Polar sets.- 5.2. Removable singularity theorems.- 5.3. Reduced functions.- 5.4. The capacity of a compact set.- 5.5. Inner and outer capacity.- 5.6. Capacitable sets.- 5.7. The fundamental convergence theorem.- 5.8. Logarithmic capacity.- 5.9. Hausdorff measure and capacity.- 5.10. Exercises.- 6. The Dirichlet Problem.- 6.1. Introduction.- 6.2. Upper and lower PWB solutions.- 6.3. Further properties of PWB solutions.- 6.4. Harmonic measure.- 6.5. Negligible sets.- 6.6. Boundarybehaviour.- 6.7. Behaviour near infinity.- 6.8. Regularity and the Green function.- 6.9. PWB solutions and reduced functions.- 6.10. Superharmonic extension.- 6.11. Exercises.- 7. The Fine Topology.- 7.1. Introduction.- 7.2. Thin sets.- 7.3. Thin sets and reduced functions.- 7.4. Fine limits.- 7.5. Thin set s and the Dirichlet problem.- 7.6. Thinness at infinity.- 7.7. Wiener’ s criterion.- 7.8. Limit properties of superharmonic functions.- 7.9. Harmonic approximation.- 8. The Martin Boundary.- 8.1. The Martin kernel and Mart in boundary.- 8.2. Reduced functions and minimal harmonic functions.- 8.3. Reduction ?0s and ?1.- 8.4. The Martin representation.- 8.5. The Martin boundary of a strip.- 8.6. The Martin kernel and the Kelvin transform.- 8.7. The boundary Harnack principle for Lipschitz domains.- 8.8. The Marti n boundary of a Lipschitz domain.- 9. Boundary Limits.- 9.1. Swept measures and the Dirichlet problem for the Martin compactification.- 9.2. Minimal thinness.- 9.3. Minimal fine limits.- 9.4. The Fatou-Naïm-Doob theorem.- 9.5. Minimal thinness in subdomains.- 9.6. Refinements of limit theorems.- 9.7. Minimal thinness in a half-space.- Historical Notes.- References.- Symbol Index.
Caracteristici
Written by the world leaders in potential theory Competitive titles are now out of print: an updated introductory text has been long awaited