Classification and Learning Using Genetic Algorithms: Applications in Bioinformatics and Web Intelligence: Natural Computing Series
Autor Sanghamitra Bandyopadhyay, Sankar Kumar Palen Limba Engleză Hardback – 23 apr 2007
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 622.80 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 23 noi 2010 | 622.80 lei 6-8 săpt. | |
Hardback (1) | 627.87 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 23 apr 2007 | 627.87 lei 6-8 săpt. |
Din seria Natural Computing Series
- 20% Preț: 507.37 lei
- 20% Preț: 544.29 lei
- 20% Preț: 305.90 lei
- 20% Preț: 954.64 lei
- 20% Preț: 618.35 lei
- 20% Preț: 960.21 lei
- 20% Preț: 630.42 lei
- 18% Preț: 927.09 lei
- 20% Preț: 617.13 lei
- 20% Preț: 621.04 lei
- 20% Preț: 615.69 lei
- 20% Preț: 630.24 lei
- Preț: 370.25 lei
- 20% Preț: 624.72 lei
- 20% Preț: 318.32 lei
- 20% Preț: 315.76 lei
- Preț: 375.06 lei
- 20% Preț: 321.32 lei
- 20% Preț: 620.28 lei
- 20% Preț: 621.22 lei
- 20% Preț: 615.97 lei
- 20% Preț: 1250.01 lei
- 15% Preț: 615.72 lei
- 20% Preț: 322.43 lei
- 20% Preț: 632.94 lei
- 20% Preț: 634.38 lei
- 20% Preț: 508.53 lei
- 20% Preț: 959.76 lei
- 20% Preț: 489.41 lei
- Preț: 385.80 lei
- 20% Preț: 628.68 lei
- 20% Preț: 308.60 lei
- 20% Preț: 629.31 lei
- 20% Preț: 623.60 lei
- 15% Preț: 627.52 lei
- 20% Preț: 323.87 lei
Preț: 627.87 lei
Preț vechi: 784.83 lei
-20% Nou
Puncte Express: 942
Preț estimativ în valută:
120.17€ • 126.77$ • 100.14£
120.17€ • 126.77$ • 100.14£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540496069
ISBN-10: 3540496068
Pagini: 332
Ilustrații: XVI, 311 p. 87 illus.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.61 kg
Ediția:2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Natural Computing Series
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540496068
Pagini: 332
Ilustrații: XVI, 311 p. 87 illus.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.61 kg
Ediția:2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Natural Computing Series
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Genetic Algorithms.- Supervised Classification Using Genetic Algorithms.- Theoretical Analysis of the GA-classifier.- Variable String Lengths in GA-classifier.- Chromosome Differentiation in VGA-classifier.- Multiobjective VGA-classifier and Quantitative Indices.- Genetic Algorithms in Clustering.- Genetic Learning in Bioinformatics.- Genetic Algorithms and Web Intelligence.
Recenzii
"This book tries to balance the mixture of theories, algorithms, and applications and is a good reference for people who want to solve a complex optimization problem for their field. ... Overall, this book is well organized and well written. There is no doubt that this is another good pattern recognition reference to have on one's bookshelf." (Zheng Liu, IAPR Newsletter 30(4), October 2008)
Textul de pe ultima copertă
This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. The book is unique in the sense of describing how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries, and it demonstrates the effectiveness of the genetic classifiers vis-à-vis several widely used classifiers, including neural networks. It provides a balanced mixture of theories, algorithms and applications, and in particular results from the bioinformatics and Web intelligence domains.
This book will be useful to graduate students and researchers in computer science, electrical engineering, systems science, and information technology, both as a text and reference book. Researchers and practitioners in industry working in system design, control, pattern recognition, data mining, soft computing, bioinformatics and Web intelligence will also benefit.
This book will be useful to graduate students and researchers in computer science, electrical engineering, systems science, and information technology, both as a text and reference book. Researchers and practitioners in industry working in system design, control, pattern recognition, data mining, soft computing, bioinformatics and Web intelligence will also benefit.
Caracteristici
First book to provide a unified framework that describes how genetic learning can be used to design pattern recognition systems Includes supplementary material: sn.pub/extras