Clifford Algebras and Lie Theory
Autor Eckhard Meinrenkenen Limba Engleză Paperback – 7 mai 2014
This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra.
Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 939.75 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 7 mai 2014 | 939.75 lei 6-8 săpt. | |
Hardback (1) | 945.86 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 16 mar 2013 | 945.86 lei 6-8 săpt. |
Preț: 939.75 lei
Preț vechi: 1146.03 lei
-18% Nou
Puncte Express: 1410
Preț estimativ în valută:
179.98€ • 185.43$ • 150.77£
179.98€ • 185.43$ • 150.77£
Carte tipărită la comandă
Livrare economică 22 februarie-08 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642544668
ISBN-10: 3642544665
Pagini: 344
Ilustrații: XX, 321 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642544665
Pagini: 344
Ilustrații: XX, 321 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateCuprins
Preface.- Conventions.- List of Symbols.- 1 Symmetric bilinear forms.- 2 Clifford algebras.- 3 The spin representation.- 4 Covariant and contravariant spinors.- 5 Enveloping algebras.- 6 Weil algebras.- 7 Quantum Weil algebras.- 8 Applications to reductive Lie algebras.- 9 D(g; k) as a geometric Dirac operator.- 10 The Hopf–Koszul–Samelson Theorem.- 11 The Clifford algebra of a reductive Lie algebra.- A Graded and filtered super spaces.- B Reductive Lie algebras.- C Background on Lie groups.- References.- Index.
Notă biografică
Main areas of research are symplectic geometry, with applications to Lie theory and mathematical physics.
Professor at the University of Toronto since 1998.
Honors include: Fellowship of the Royal Society of Canada (since 2008), Steacie Fellowship (2007), McLean Award (2003), Andre Aisenstadt Prize (2001).
Invited speaker at the 2002 ICM in Beijing.
Professor at the University of Toronto since 1998.
Honors include: Fellowship of the Royal Society of Canada (since 2008), Steacie Fellowship (2007), McLean Award (2003), Andre Aisenstadt Prize (2001).
Invited speaker at the 2002 ICM in Beijing.
Caracteristici
Convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics Included are many developments from the last 15 years, drawn in part from the author's research Largely self-contained exposition Includes supplementary material: sn.pub/extras