Cantitate/Preț
Produs

Cohomology of Arithmetic Groups and Automorphic Forms: Proceedings of a Conference held in Luminy/Marseille, France, May 22-27, 1989: Lecture Notes in Mathematics, cartea 1447

Editat de Jean-Pierre Labesse, Joachim Schwermer
en Limba Engleză Paperback – 28 noi 1990
Cohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 41638 lei

Nou

Puncte Express: 625

Preț estimativ în valută:
7968 8414$ 6631£

Carte tipărită la comandă

Livrare economică 11-25 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540534228
ISBN-10: 3540534229
Pagini: 364
Ilustrații: VI, 362 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Cohomology of arithmetic groups, automorphic forms and L-functions.- Limit multiplicities in L 2(??G).- Generalized modular symbols.- On Yoshida's theta lift.- Some results on the Eisenstein cohomology of arithmetic subgroups of GL n .- Period invariants of Hilbert modular forms, I: Trilinear differential operators and L-functions.- An effective finiteness theorem for ball lattices.- Unitary representations with nonzero multiplicities in L2(??G).- Signature des variétés modulaires de Hilbert et representations diédrales.- The Riemann-Hodge period relation for Hilbert modular forms of weight 2.- Modular symbols and the Steinberg representation.- Lefschetz numbers for arithmetic groups.- Boundary contributions to Lefschetz numbers for arithmetic groups I.- Embedding of Flensted-Jensen modules in L 2(??G) in the noncompact case.