Riemann Surfaces: Graduate Texts in Mathematics, cartea 71
Autor Hershel M. Farkas, Irwin Kraen Limba Engleză Paperback – 29 oct 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 475.47 lei 6-8 săpt. | |
Springer – 29 oct 2012 | 475.47 lei 6-8 săpt. | |
Hardback (1) | 651.19 lei 6-8 săpt. | |
Springer – 23 dec 1991 | 651.19 lei 6-8 săpt. |
Din seria Graduate Texts in Mathematics
- Preț: 337.45 lei
- Preț: 383.85 lei
- Preț: 402.87 lei
- 17% Preț: 528.66 lei
- 17% Preț: 398.97 lei
- Preț: 355.82 lei
- Preț: 412.24 lei
- Preț: 404.47 lei
- Preț: 289.88 lei
- 17% Preț: 365.79 lei
- 17% Preț: 359.45 lei
- 15% Preț: 488.70 lei
- Preț: 381.92 lei
- 13% Preț: 357.75 lei
- Preț: 407.88 lei
- 13% Preț: 352.49 lei
- 13% Preț: 358.86 lei
- 13% Preț: 393.48 lei
- 11% Preț: 351.00 lei
- 17% Preț: 359.58 lei
- Preț: 350.45 lei
- Preț: 399.74 lei
- Preț: 498.91 lei
- 20% Preț: 571.26 lei
- 15% Preț: 546.59 lei
- Preț: 498.69 lei
- 15% Preț: 354.39 lei
- Preț: 313.10 lei
- 13% Preț: 427.39 lei
- 17% Preț: 363.59 lei
- Preț: 340.18 lei
- 17% Preț: 364.47 lei
- 17% Preț: 366.47 lei
- 17% Preț: 366.06 lei
- Preț: 247.59 lei
- 17% Preț: 367.70 lei
- 13% Preț: 356.79 lei
- 17% Preț: 398.78 lei
- 17% Preț: 398.51 lei
- 17% Preț: 496.63 lei
- 15% Preț: 482.97 lei
- Preț: 401.99 lei
- 17% Preț: 366.56 lei
- 20% Preț: 449.73 lei
- Preț: 380.34 lei
- 17% Preț: 427.27 lei
- Preț: 358.07 lei
Preț: 475.47 lei
Preț vechi: 559.38 lei
-15% Nou
Puncte Express: 713
Preț estimativ în valută:
90.98€ • 94.99$ • 75.30£
90.98€ • 94.99$ • 75.30£
Carte tipărită la comandă
Livrare economică 05-19 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461273912
ISBN-10: 1461273919
Pagini: 388
Ilustrații: XVI, 366 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:Softcover reprint of the original 2nd ed. 1992
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461273919
Pagini: 388
Ilustrații: XVI, 366 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:Softcover reprint of the original 2nd ed. 1992
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
0 An Overview.- 0.1. Topological Aspects, Uniformization, and Fuchsian Groups.- 0.2. Algebraic Functions.- 0.3. Abelian Varieties.- 0.4. More Analytic Aspects.- I Riemann Surfaces.- I.1. Definitions and Examples.- I.2. Topology of Riemann Surfaces.- I.3. Differential Forms.- I.4. Integration Formulae.- II Existence Theorems.- II. 1. Hilbert Space Theory—A Quick Review.- II.2. Weyl’s Lemma.- II.3. The Hilbert Space of Square Integrable Forms.- II.4. Harmonic Differentials.- II.5. Meromorphic Functions and Differentials.- III Compact Riemann Surfaces.- III. 1. Intersection Theory on Compact Surfaces.- III.2. Harmonic and Analytic Differentials on Compact Surfaces.- III.3. Bilinear Relations.- III.4. Divisors and the Riemann-Roch Theorem.- III.5. Applications of the Riemann-Roch Theorem.- III.6. Abel’s Theorem and the Jacobi Inversion Problem.- III.7. Hyperelliptic Riemann Surfaces.- III.8. Special Divisors on Compact Surfaces.- III.9. Multivalued Functions.- III. 10. Projective Imbeddings.- III. 11. More on the Jacobian Variety.- III. 12. Torelli’s Theorem.- IV Uniformization.- IV. 1. More on Harmonic Functions (A Quick Review).- IV.2. Subharmonic Functions and Perron’s Method.- IV.3. A Classification of Riemann Surfaces.- IV.4. The Uniformization Theorem for Simply Connected Surfaces.- IV.5. Uniformization of Arbitrary Riemann Surfaces.- IV.6. The Exceptional Riemann Surfaces.- IV. 7. Two Problems on Moduli.- IV.8. Riemannian Metrics.- IV.9. Discontinuous Groups and Branched Coverings.- IV. 10. Riemann-Roch—An Alternate Approach.- IV. 11. Algebraic Function Fields in One Variable.- V Automorphisms of Compact Surfaces—Elementary Theory.- V.l. Hurwitz’s Theorem.- V.2. Representations of the Automorphism Group on Spaces of Differentials.- V.3. Representationof Aut M on H1(M).- V.4. The Exceptional Riemann Surfaces.- VI Theta Functions.- VI. 1. The Riemann Theta Function.- VI.2. The Theta Functions Associated with a Riemann Surface.- VI.3. The Theta Divisor.- VII Examples.- VII. 1. Hyperelliptic Surfaces (Once Again).- VII.2. Relations Among Quadratic Differentials.- VII.3. Examples of Non-hyperelliptic Surfaces.- VII.4. Branch Points of Hyperelliptic Surfaces as Holomorphic Functions of the Periods.- VII.5. Examples of Prym Differentials.- VII.6. The Trisecant Formula.