Cohomology Theories for Compact Abelian Groups
Apendix de Eric C. Nummela Autor Karl H. Hofmann, Paul S. Mosterten Limba Engleză Paperback – 14 dec 2011
Preț: 375.97 lei
Nou
Puncte Express: 564
Preț estimativ în valută:
71.95€ • 75.67$ • 60.12£
71.95€ • 75.67$ • 60.12£
Carte tipărită la comandă
Livrare economică 08-22 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642806728
ISBN-10: 3642806724
Pagini: 240
Ilustrații: 236 p.
Dimensiuni: 170 x 244 x 13 mm
Greutate: 0.39 kg
Ediția:1973
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642806724
Pagini: 240
Ilustrații: 236 p.
Dimensiuni: 170 x 244 x 13 mm
Greutate: 0.39 kg
Ediția:1973
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Algebraic background.- Section 1. On exponential functors.- Section 2. The arithmetic of certain spectral algebras.- Section 3. Some analogues of the results about spectral algebras with dual derivations.- Section 4. The Bockstein formalism.- II. The cohomology of finite abelian groups.- Section 1. Products.- Section 2. Special free resolutions for finite abelian groups.- Section 3. About the cohomology of finite abelian groups in the case of trivial action.- Section 4. Appendix to Section 3: The low dimensions.- III. The cohomology of classifying spaces of compact groups.- Section 1. The functor h.- Section 2. The functor h for finite groups.- IV. Kan extensions of functors on dense categories.- Section 1. Dense categories and continuous functors.- Section 2. Multiplicative Hopf extensions.- V. The cohomological structure of compact abelian groups.- Section 1. The cohomologies of connected compact abelian groups.- Section 2. The space cohomology of arbitrary compact abelian groups.- Section 3. The canonical embedding of ? in hG.- Section 4. Cohomology theories for compact groups over fields as coefficient domains.- Section 5. The structure of h for arbitrary compact abelian groups and integral coefficients.- VI. Appendix. Another construction of the functor h.- Proposition 1. About the graph of < for a topological monoid acting on a space — Proposition 2. Properties of the Dold-Lashof spectrum.- List of notations.