Cantitate/Preț
Produs

Common Zeros of Polynominals in Several Variables and Higher Dimensional Quadrature: Chapman & Hall/CRC Research Notes in Mathematics Series

Autor Yuan Xu
en Limba Engleză Hardback – 28 iun 2018
Presents a systematic study of the common zeros of polynomials in several variables which are related to higher dimensional quadrature. The author uses a new approach which is based on the recent development of orthogonal polynomials in several variables and differs significantly from the previous ones based on algebraic ideal theory. Featuring a great deal of new work, new theorems and, in many cases, new proofs, this self-contained work will be of great interest to researchers in numerical analysis, the theory of orthogonal polynomials and related subjects.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 20604 lei  6-8 săpt.
  CRC Press – 10 oct 1994 20604 lei  6-8 săpt.
Hardback (1) 67891 lei  6-8 săpt.
  CRC Press – 28 iun 2018 67891 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Research Notes in Mathematics Series

Preț: 67891 lei

Preț vechi: 91390 lei
-26% Nou

Puncte Express: 1018

Preț estimativ în valută:
12994 13507$ 10764£

Carte tipărită la comandă

Livrare economică 04-18 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781138417731
ISBN-10: 1138417734
Pagini: 134
Dimensiuni: 165 x 241 mm
Greutate: 0.41 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Research Notes in Mathematics Series


Public țintă

Professional

Cuprins

Preface -- 1. Introduction -- 1.1 Review of the theory in one variable -- 1.2 Background to the theory in several variables -- 1.3 Outline of the content -- 2. Preliminaries and Lemmas -- 2.1 Orthogonal polynomials in several variables -- 2.2 Centrally symmetric linear functional -- 2.1 Lemmas -- 3. Motivations -- 3.1 Zeros for a special functional -- 3.2 Necessary conditions for the existence of minimal cubature formula -- 3.3 Definitions -- 4. Common Zeros of Polynomials in Several Variables: First Case -- 4.1 Characterization of zeros -- 4.2 A Christoffel-Darboux formula -- 4.3 Lagrange interpolation -- 4.4 Cubature formula of degree 2n — 1 -- 5. Moller’s Lower Bound for Cubature Formula -- 5.1 The first lower bound -- 5.2 Moller’s first lower bound -- 5.3 Cubature formulae attaining the lower bound -- 5.4 Moller’s second lower bound -- 6. Examples -- 6.1 Preliminaries -- 6.2 Examples: Chebyshev weight function -- 6.3 Examples: product weight function -- 7. Common Zeros of Polynomials in Several Variables: General Case . 85 -- 7.1 Characterization of zeros 86 -- 7.2 Modified Christoffel-Darboux formula 93 -- 7.3 Cubature formula of degree 2n — 1 96 -- 8. Cubature Formulae of Even Degree99 -- 8.1 Preliminaries 99 -- 8.2 Characterization 101 -- 8.3 Example 105 -- 9. Final Discussions 108 -- 9.1 Cubature formula of degree 2n — s 108 -- 9.2 Construction of cubature formula, afterthoughts 112 -- References.

Descriere

The purpose of this monograph is to study the common zeroes of families of polynomials in several variables which are related to higher dimensional quadrature. It aims to introduce a new approach and use it to conduct a systematic study.