Computational Methods for Data Evaluation and Assimilation
Autor Dan Gabriel Cacuci, Ionel Michael Navon, Mihaela Ionescu-Bujoren Limba Engleză Paperback – 19 sep 2019
After presenting the fundamentals underlying the evaluation of experimental data, the book explains how to estimate covariances and confidence intervals from experimental data. It then describes algorithms for both unconstrained and constrained minimization of large-scale systems, such as time-dependent variational data assimilation in weather prediction and similar applications in the geophysical sciences. The book also discusses several basic principles of four-dimensional variational assimilation (4D VAR) and highlights specific difficulties in applying 4D VAR to large-scale operational numerical weather prediction models.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 368.14 lei 6-8 săpt. | |
CRC Press – 19 sep 2019 | 368.14 lei 6-8 săpt. | |
Hardback (1) | 984.86 lei 6-8 săpt. | |
CRC Press – 21 aug 2013 | 984.86 lei 6-8 săpt. |
Preț: 368.14 lei
Preț vechi: 477.19 lei
-23% Nou
Puncte Express: 552
Preț estimativ în valută:
70.45€ • 74.11$ • 58.33£
70.45€ • 74.11$ • 58.33£
Carte tipărită la comandă
Livrare economică 14-28 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367379612
ISBN-10: 0367379619
Pagini: 374
Dimensiuni: 156 x 234 x 20 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
ISBN-10: 0367379619
Pagini: 374
Dimensiuni: 156 x 234 x 20 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Public țintă
Academic and Professional Practice & DevelopmentCuprins
Experimental Data Evaluation: Basic Concepts. Computation of Means and Variances from Measurements. Optimization Methods for Large-Scale Data Assimilation. Basic Principles of 4D VAR. 4D VAR in Numerical Weather Prediction Models. Appendices. Bibliography. Index.
Notă biografică
Cacuci, Dan Gabriel; Navon, Ionel Michael; Ionescu-Bujor, Mihaela
Descriere
This self-contained book presents interdisciplinary methods for integrating experimental and computational information in many scientific and engineering areas. It explains how to estimate covariances and confidence intervals from experimental data. It then describes algorithms for both unconstrained and constrained minimization of large-scale systems, such as time-dependent variational data assimilation in weather prediction. The book also discusses several basic principles of four-dimensional variational assimilation (4D VAR) and highlights specific difficulties in applying 4D VAR to large-scale operational numerical weather prediction models.