Computational Methods for Linear Integral Equations
Autor Prem Kythe, Pratap Purien Limba Engleză Paperback – 23 oct 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 401.61 lei 6-8 săpt. | |
Birkhäuser Boston – 23 oct 2012 | 401.61 lei 6-8 săpt. | |
Hardback (1) | 406.63 lei 6-8 săpt. | |
Birkhäuser Boston – 26 apr 2002 | 406.63 lei 6-8 săpt. |
Preț: 401.61 lei
Nou
Puncte Express: 602
Preț estimativ în valută:
76.86€ • 79.29$ • 65.05£
76.86€ • 79.29$ • 65.05£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461266129
ISBN-10: 1461266122
Pagini: 532
Ilustrații: XVIII, 508 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.74 kg
Ediția:Softcover reprint of the original 1st ed. 2002
Editura: Birkhäuser Boston
Colecția Birkhäuser
Locul publicării:Boston, MA, United States
ISBN-10: 1461266122
Pagini: 532
Ilustrații: XVIII, 508 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.74 kg
Ediția:Softcover reprint of the original 1st ed. 2002
Editura: Birkhäuser Boston
Colecția Birkhäuser
Locul publicării:Boston, MA, United States
Public țintă
Professional/practitionerCuprins
1 Introduction.- 1 1 Notation and Definitions.- 1.2 Classification.- 1.3 Function Spaces.- 1.4 Convergence.- 1.5 Inverse Operator.- 1.6 Nyström System.- 1.7 Other Types of Kernels.- 1.8 Neumann Series.- 1.9 Resolvent Operator.- 1.10 Fredholm Alternative.- 2 Eigenvalue Problems.- 2.1 Linear Symmetric Equations.- 2.2 Residual Methods.- 2.3 Degenerate Kernels.- 2.4 Replacement by a Degenerate Kernel.- 2.5 Baterman’s Method.- 2.6 Generallized Eigenvalue Problem.- 2.7 Applications.- 3 Equations of the Second Kind.- 3.1 Fredholm Equations.- 3.2 Volterra Equations.- 4 Classical Methods for FK2.- 4.1 Expansion Method.- 4.2 Product-Integration Method.- 4.3 Quadrature Method.- 4.4 Deferred Correction Methods.- 4.5 A Modified Quadrature Method.- 4.6 Collocation Methods.- 4.7 Elliott’s Modification.- 5 Variational Methods.- 5.1 Galerkin Method.- 5.2 Ritz-Galerkin Methods.- 5.3 Special Cases.- 5.4 Fredholm-Nyström System.- 6 Iteration Methods.- 6.1 Simple Iterations.- 6.2 Quadrature Formulas.- 6.3 Error Analysis.- 6.4 Iterative Scheme.- 6.5 Krylov-Bogoliubov Method.- 7 Singular Equations.- 7.1 Singularities in Linear Equations.- 7.2 Fredholm Theorems.- 7.3 Modified Quadrature Rule.- 7.4 Convolution-Type Kernels.- 7.5 Volterra-Type Singular Equations.- 7.6 Convolution Methods.- 7.7 Asymptotic Methods for Log-Singular Equations.- 7.8 Iteration Methods.- 7.9 Singular Equations with the Hilbert Kernel.- 7.10 Finite-Part Singular Equations.- 8 Weakly Singular Equations.- 8.1 Weakly Singular Kernel.- 8.2 Taylor’s Series Method.- 8.3 Lp-Approximation Method.- 8.4 Product-Integration Method.- 8.5 Splines Method.- 8.6 Weakly Singular Volterra Equations.- 9 Cauchy Singular Equations.- 9.1 Cauchy Singular Equations of the First Kind.- 9.2 Approximation by Trigonometric Polynomials.-9.3 Cauchy Singular Equations of the Second Kind.- 9.4 From CSK2 to FK2.- 9.5 Gauss-Jacobi Quadrature.- 9.6 Collocation Method for CSK1.- 10 Sinc-Galerkin Methods.- 10.1 Sine Function Approximations.- 10.2 Conformal Maps and Interpolation.- 10.3 Approximation Theory.- 10.4 Convergence.- 10.5 Sinc-Galerkin Scheme.- 10.6 Computation Guidelines.- 10.7 Sine-Collocation Method.- 10.8 Single-Layer Potential.- 10.9 Double-Layer Problem.- 11 Equations of the First Kind.- 11.1 Inherent Ill-Posedness.- 11.2 Separable Kernels.- 11.3 Some Theorems.- 11.4 Numerical Methods.- 11.5 Volterra Equations of the First Kind.- 11.6 Abel’s Equation.- 11.7 Iterative Schemes.- 12 Inversion of Laplace Transforms.- 12.1 Laplace Transforms.- 12.2 General Interpolating Scheme.- 12.3 Inversion by Fourier Series.- 12.4 Inversion by the Riemann Sum.- 12.5 Approximate Formulas.- A Quadrature Rules.- A. 1 Newton-Cotes Quadratures.- A.2 Gaussian Quadratures.- A.3 Integration of Products.- A.4 Singular Integrals.- A.5 Infinite-Range Integrals.- A. 6 Linear Transformation of Quadratures.- A.7 Trigonometric Polynomials.- A.8 Condition Number.- A.7 Quadrature Tables.- B Orthogonal Polynomials.- B.l Zeros of Some Orthogonal Polynomials.- C Whittaker’s Cardinal Function.- C. 1 Basic Results.- C.2 Approximation of an Integral.- D Singular Integrals.- D.l Cauchy’s Principal-Value Integrals.- D.2 P.V. of a Singular Integral on a Contour.- D.3 Hadamard’s Finite-Part Integrals.- D.4 Two-Sided Finite-Part Integrals.- D.5 One-Sided Finite-Part Integrals.- D.6 Examples of Cauchy P.V. Integrals.- D.7 Examples of Hadamard’s Finite-Part Integrals.
Recenzii
"The monograph is devoted to numerical methods for solving one-dimensional linear integral equations. Fredholm and Volterra integral equations of first and second kinds are considered. The authors pay more attention to computational aspects of solving integral equations. A lot of numerical examples and results of computations by computers are presented." —Mathematical Reviews
"This book presents numerical methods and computational aspects for linear integral equations that appear in various areas of applied mathematics, physics, and engineering…. The book is an excellent reference for graduate students and researchers in mathematics and engineering." —Memoriile Sectiilor Stiintifice
"This book presents numerical methods and computational aspects for linear integral equations that appear in various areas of applied mathematics, physics, and engineering…. The book is an excellent reference for graduate students and researchers in mathematics and engineering." —Memoriile Sectiilor Stiintifice
Caracteristici
Includes supplementary material: sn.pub/extras