Computer Safety, Reliability, and Security: 42nd International Conference, SAFECOMP 2023, Toulouse, France, September 20–22, 2023, Proceedings: Lecture Notes in Computer Science, cartea 14181
Editat de Jérémie Guiochet, Stefano Tonetta, Friedemann Bitschen Limba Engleză Paperback – 11 aug 2023
Din seria Lecture Notes in Computer Science
- 20% Preț: 1053.72 lei
- 20% Preț: 337.82 lei
- 20% Preț: 339.43 lei
- 20% Preț: 449.99 lei
- 20% Preț: 238.01 lei
- 20% Preț: 337.82 lei
- 20% Preț: 438.69 lei
- Preț: 446.28 lei
- 20% Preț: 341.10 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 640.52 lei
- 17% Preț: 427.22 lei
- 20% Preț: 650.20 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1067.33 lei
- 20% Preț: 587.17 lei
- Preț: 378.43 lei
- 20% Preț: 334.54 lei
- 15% Preț: 435.36 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1404.34 lei
- 20% Preț: 1016.88 lei
- 20% Preț: 575.04 lei
- 20% Preț: 575.48 lei
- 20% Preț: 579.12 lei
- 20% Preț: 757.61 lei
- 15% Preț: 576.20 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 350.92 lei
- 20% Preț: 581.57 lei
- Preț: 407.85 lei
- 20% Preț: 592.06 lei
- 20% Preț: 757.61 lei
- 20% Preț: 819.86 lei
- 20% Preț: 649.49 lei
- 20% Preț: 347.62 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 386.77 lei
Preț vechi: 483.46 lei
-20% Nou
Puncte Express: 580
Preț estimativ în valută:
74.07€ • 76.32$ • 62.05£
74.07€ • 76.32$ • 62.05£
Carte tipărită la comandă
Livrare economică 24 februarie-10 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031409226
ISBN-10: 3031409221
Ilustrații: XVII, 284 p. 113 illus., 82 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.43 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031409221
Ilustrații: XVII, 284 p. 113 illus., 82 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.43 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Safety Assurance.- Assurance Case Arguments in the Large – CERN LHC Machine Protection System.- Identifying Run-time Monitoring Requirements for Autonomous Systems through the Analysis of Safety Arguments.- Redesigning Medical Device Assurance: Separating Technological and Clinical Assurance Cases.- Software Testing & Reliability.- A Cognitive Framework for Modeling Coincident Software Faults: An Experimental Study.- A Taxonomy of Software Defect Forms for Certification Tests in Aviation Industry.- Constraint-guided Test Execution Scheduling: An Experience Report at ABB Robotics.- Neural Networks Robustness & Monitoring.- A low-cost strategic monitoring approach for scalable and interpretable error detection in deep neural networks.- Are Transformers More Robust? Towards Exact Robustness Verification for Transformers.- Model-based Security and Threat Analysis.- Model-based Generation of Attack-Fault Trees.- MBTA: A Model-Based Threat Analysis approach for software architectures.- Attribute Repair for Threat Prevention.- Safety of Autonomous Driving.- Probabilistic Spatial Relations for Monitoring Behavior of Road Users.- Concept and metamodel to support cross-domain safety analysis for ODD expansion of autonomous systems.- Security Engineering.- Pattern-Based Information Flow Control for Safety-Critical On-Chip Systems.- From Standard to Practice: Towards ISA/IEC 62443-conform Public Key Infrastructures.- AI Safety.- The Impact of Training Data Shortfalls on Safety of AI-based Clinical Decision Support Systems.- Data-centric Operational Design Domain Characterization for Machine Learning-based Aeronautical Products.- Online Quantization Adaptation for Fault-Tolerant Neural Network Inference.- Neural Networks & Testing.- Evaluation of Parameter-based Attacks against Embedded Neural Networks with Laser Injection.- Towards Scenario-based Safety Validation for Autonomous Trains with Deep Generative Models.