Cantitate/Preț
Produs

Concise Introduction to Linear Algebra

Autor Qingwen Hu
en Limba Engleză Paperback – 30 sep 2020
Concise Introduction to Linear Algebra deals with the subject of linear algebra, covering vectors and linear systems, vector spaces, orthogonality, determinants, eigenvalues and eigenvectors, singular value decomposition. It adopts an efficient approach to lead students from vectors, matrices quickly into more advanced topics including, LU decomposition, orthogonal decomposition, Least squares solutions, Gram-Schmidt process, eigenvalues and eigenvectors, diagonalizability, spectral decomposition, positive definite matrix, quadratic forms, singular value decompositions and principal component analysis. This book is designed for onesemester teaching to undergraduate students.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 31065 lei  6-8 săpt.
  CRC Press – 30 sep 2020 31065 lei  6-8 săpt.
Hardback (1) 48301 lei  6-8 săpt.
  CRC Press – 21 sep 2017 48301 lei  6-8 săpt.

Preț: 31065 lei

Preț vechi: 35662 lei
-13% Nou

Puncte Express: 466

Preț estimativ în valută:
5944 6278$ 4947£

Carte tipărită la comandă

Livrare economică 11-25 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367657703
ISBN-10: 0367657708
Pagini: 230
Dimensiuni: 156 x 234 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC

Cuprins

Vectors and linear systems. Solving linear systems. Vector spaces. Orthogonality. Determinants. Eigenvalues and Eigenvectors. Singular value decomposition.

Notă biografică

Qingwen Hu is Assistant Professor at the University of Texas at Dallas. His research interests include: dynamical systems; state-dependent delay differential equations and their applications in engineering and biology; equivariant degree theory and applications; nonlinear analysis; operations research.

Descriere

Concise Introduction to Linear Algebra deals with the subject of linear algebra, covering vectors and linear systems, vector spaces, orthogonality, determinants, eigenvalues and eigenvectors, singular value decomposition. It adopts an efficient approach to lead students from vectors, matrices quickly into more advanced