Conference on the Numerical Solution of Differential Equations: Held in Dundee/Scotland, June 23-27, 1969: Lecture Notes in Mathematics, cartea 109
Editat de J. L. Morrisen Limba Engleză Paperback – 1969
Din seria Lecture Notes in Mathematics
- 17% Preț: 360.42 lei
- Preț: 459.92 lei
- Preț: 121.41 lei
- Preț: 175.68 lei
- Preț: 197.00 lei
- Preț: 279.76 lei
- Preț: 477.65 lei
- 17% Preț: 361.88 lei
- Preț: 252.37 lei
- Preț: 353.99 lei
- Preț: 138.88 lei
- Preț: 152.61 lei
- Preț: 116.67 lei
- Preț: 102.77 lei
- 17% Preț: 365.52 lei
- Preț: 396.75 lei
- 17% Preț: 362.12 lei
- Preț: 396.11 lei
- Preț: 357.78 lei
- 17% Preț: 362.31 lei
- Preț: 403.80 lei
- 17% Preț: 361.70 lei
- Preț: 499.87 lei
- Preț: 457.03 lei
- Preț: 395.90 lei
- Preț: 459.00 lei
- Preț: 487.57 lei
- Preț: 424.01 lei
- Preț: 487.57 lei
- Preț: 330.55 lei
- Preț: 325.75 lei
- Preț: 350.30 lei
- Preț: 331.31 lei
- Preț: 408.37 lei
- Preț: 328.25 lei
- Preț: 421.28 lei
- Preț: 276.08 lei
- Preț: 424.60 lei
- Preț: 422.05 lei
- Preț: 505.01 lei
- Preț: 422.05 lei
- Preț: 274.93 lei
- Preț: 335.16 lei
- Preț: 422.27 lei
- Preț: 497.49 lei
- Preț: 272.81 lei
- Preț: 428.04 lei
- Preț: 376.22 lei
- Preț: 427.10 lei
- Preț: 325.92 lei
Preț: 327.66 lei
Nou
Puncte Express: 491
Preț estimativ în valută:
62.70€ • 65.46$ • 51.89£
62.70€ • 65.46$ • 51.89£
Carte tipărită la comandă
Livrare economică 05-19 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540046288
ISBN-10: 3540046283
Pagini: 284
Ilustrații: VI, 278 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:1969
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540046283
Pagini: 284
Ilustrații: VI, 278 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:1969
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Generalisation of an inclusion theorem of L.COLLATZ.- On certain iterative methods for solving nonlinear difference equations.- Instability when solving Volterra integral equations of the second kind by multistep methods.- Numerical solution of boundary value problems in Chebyshev series — A method of computation and error estimation.- The numerical stability in solution of differential equations.- On the effects of scaling of the peaceman-rachford method.- The effective order of Runge-Kutta methods.- Error bounds for some single step methods.- Approximation of nonlinear operators.- On the numerical treatment of hyperbolic differential equations with constant coefficients, particularly the n-dimensional wave equation.- Monotonic difference schemes for weakly coupled systems of parabolic differential equations.- The numerical solution of evolutionary partial differential equations.- A method for the numerical integration of non-linear ordinary differential equations with greatly different time constants.- Numerical solution of two differential-difference equations of analytic theory of numbers.- Global accuracy and A-stability of one- and two-step integration formulae for stiff ordinary differential equations.- Optimal order multistep methods with an arbitrary number of nonsteppoints.- Alternating direction methods for parabolic equations in two and three space dimensions with mixed derivatives.- On the convergence rates of variational methods.- An A-stable modification of the Adams-Bashforth methods.- Stability, consistency and convergence of variable K-step methods for numerical integration of large systems of ordinary differential equations.- Local-error estimates for variable-step Runge-Kutta methods.- Time-dependent techniques for the solution of viscous, heatconducting, chemically reacting, radiating discontinuous flows.- Attempts to optimize the structure of an ode program.- Round-off error in the numerical solution of second order differential equations.- Stability properties of the extrapolation method.- Implicit methods for implicit differential equations.- Solution of elliptic eigenvalue problems by calculating ? "Separable" solutions of a dynamic problem.