A Probabilistic Theory of Pattern Recognition: Stochastic Modelling and Applied Probability, cartea 31
Autor Luc Devroye, Laszlo Györfi, Gabor Lugosien Limba Engleză Hardback – 4 apr 1996
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 584.56 lei 43-57 zile | |
Springer – 22 noi 2013 | 584.56 lei 43-57 zile | |
Hardback (1) | 781.89 lei 43-57 zile | |
Springer – 4 apr 1996 | 781.89 lei 43-57 zile |
Din seria Stochastic Modelling and Applied Probability
- 17% Preț: 464.59 lei
- 18% Preț: 782.37 lei
- 18% Preț: 1078.83 lei
- 18% Preț: 920.17 lei
- Preț: 379.72 lei
- 18% Preț: 925.07 lei
- 15% Preț: 629.99 lei
- 18% Preț: 924.60 lei
- 15% Preț: 618.89 lei
- 18% Preț: 770.87 lei
- Preț: 379.88 lei
- Preț: 389.98 lei
- 15% Preț: 620.78 lei
- 18% Preț: 712.31 lei
- 18% Preț: 762.59 lei
- 15% Preț: 576.43 lei
- 18% Preț: 1082.96 lei
- 15% Preț: 624.74 lei
- Preț: 379.51 lei
- 15% Preț: 627.11 lei
- 15% Preț: 623.34 lei
- 18% Preț: 927.23 lei
- 15% Preț: 626.67 lei
- 18% Preț: 920.30 lei
- 15% Preț: 626.18 lei
- 20% Preț: 469.57 lei
- 20% Preț: 581.37 lei
Preț: 781.89 lei
Preț vechi: 953.53 lei
-18% Nou
Puncte Express: 1173
Preț estimativ în valută:
149.65€ • 155.98$ • 124.58£
149.65€ • 155.98$ • 124.58£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387946184
ISBN-10: 0387946187
Pagini: 638
Ilustrații: XV, 638 p.
Dimensiuni: 155 x 235 x 41 mm
Greutate: 1.1 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
ISBN-10: 0387946187
Pagini: 638
Ilustrații: XV, 638 p.
Dimensiuni: 155 x 235 x 41 mm
Greutate: 1.1 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Preface * Introduction * The Bayes Error * Inequalities and alternate
distance measures * Linear discrimination * Nearest neighbor rules *
Consistency * Slow rates of convergence Error estimation * The regular
histogram rule * Kernel rules Consistency of the k-nearest neighbor
rule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-
Chervonenkis theory * Lower bounds for empirical classifier selection
* The maximum likelihood principle * Parametric classification *
Generalized linear discrimination * Complexity regularization *
Condensed and edited nearest neighbor rules * Tree classifiers * Data-
dependent partitioning * Splitting the data * The resubstitution
estimate * Deleted estimates of the error probability * Automatic
kernel rules * Automatic nearest neighbor rules * Hypercubes and
discrete spaces * Epsilon entropy and totally bounded sets * Uniform
laws of large numbers * Neural networks * Other error estimates *
Feature extraction * Appendix * Notation * References * Index
distance measures * Linear discrimination * Nearest neighbor rules *
Consistency * Slow rates of convergence Error estimation * The regular
histogram rule * Kernel rules Consistency of the k-nearest neighbor
rule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-
Chervonenkis theory * Lower bounds for empirical classifier selection
* The maximum likelihood principle * Parametric classification *
Generalized linear discrimination * Complexity regularization *
Condensed and edited nearest neighbor rules * Tree classifiers * Data-
dependent partitioning * Splitting the data * The resubstitution
estimate * Deleted estimates of the error probability * Automatic
kernel rules * Automatic nearest neighbor rules * Hypercubes and
discrete spaces * Epsilon entropy and totally bounded sets * Uniform
laws of large numbers * Neural networks * Other error estimates *
Feature extraction * Appendix * Notation * References * Index