Image Analysis, Random Fields and Dynamic Monte Carlo Methods: A Mathematical Introduction: Stochastic Modelling and Applied Probability, cartea 27
Autor Gerhard Winkleren Limba Engleză Paperback – 19 ian 2012
Din seria Stochastic Modelling and Applied Probability
- 17% Preț: 464.60 lei
- 18% Preț: 774.96 lei
- 18% Preț: 1068.61 lei
- 18% Preț: 911.45 lei
- Preț: 376.16 lei
- 18% Preț: 916.31 lei
- 15% Preț: 624.05 lei
- 18% Preț: 915.84 lei
- 15% Preț: 613.05 lei
- 18% Preț: 763.58 lei
- Preț: 376.33 lei
- Preț: 386.33 lei
- 15% Preț: 614.92 lei
- 18% Preț: 705.57 lei
- 18% Preț: 755.38 lei
- 15% Preț: 570.99 lei
- 18% Preț: 1072.69 lei
- 15% Preț: 618.84 lei
- 15% Preț: 621.19 lei
- 15% Preț: 617.44 lei
- 18% Preț: 918.46 lei
- 15% Preț: 620.74 lei
- 18% Preț: 911.60 lei
- 18% Preț: 774.50 lei
- 15% Preț: 620.26 lei
- 20% Preț: 469.59 lei
- 20% Preț: 581.39 lei
Preț: 375.96 lei
Nou
Puncte Express: 564
Preț estimativ în valută:
71.95€ • 75.91$ • 59.96£
71.95€ • 75.91$ • 59.96£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642975240
ISBN-10: 3642975240
Pagini: 340
Ilustrații: XIV, 324 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642975240
Pagini: 340
Ilustrații: XIV, 324 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Bayesian Image Analysis: Introduction.- 1. The Bayesian Paradigm.- 2. Cleaning Dirty Pictures.- 3. Random Fields.- II. The Gibbs Sampler and Simulated Annealing.- 4. Markov Chains: Limit Theorems.- 5. Sampling and Annealing.- 6. Cooling Schedules.- 7. Sampling and Annealing Revisited.- III. More on Sampling and Annealing.- 8. Metropolis Algorithms.- 9. Alternative Approaches.- 10. Parallel Algorithms.- IV. Texture Analysis.- 11. Partitioning.- 12. Texture Models and Classification.- V. Parameter Estimation.- 13. Maximum Likelihood Estimators.- 14. Spacial ML Estimation.- VI. Supplement.- 15. A Glance at Neural Networks.- 16. Mixed Applications.- VII. Appendix.- A. Simulation of Random Variables.- B. The Perron-Frobenius Theorem.- C. Concave Functions.- D. A Global Convergence Theorem for Descent Algorithms.- References.
Textul de pe ultima copertă
The book is mainly concerned with the mathematical foundations of Bayesian image analysis and its algorithms. This amounts to the study of Markov random fields and dynamic Monte Carlo algorithms like sampling, simulated annealing and stochastic gradient algorithms. The approach is introductory and elemenatry: given basic concepts from linear algebra and real analysis it is self-contained. No previous knowledge from image analysis is required. Knowledge of elementary probability theory and statistics is certainly beneficial but not absolutely necessary. The necessary background from imaging is sketched and illustrated by a number of concrete applications like restoration, texture segmentation and motion analysis.