Conjugate Direction Methods in Optimization: Stochastic Modelling and Applied Probability, cartea 12
Autor M.R. Hestenesen Limba Engleză Hardback – 18 mar 1980
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 946.41 lei 6-8 săpt. | |
Springer – 31 mai 2013 | 946.41 lei 6-8 săpt. | |
Hardback (1) | 952.40 lei 6-8 săpt. | |
Springer – 18 mar 1980 | 952.40 lei 6-8 săpt. |
Din seria Stochastic Modelling and Applied Probability
- 17% Preț: 464.60 lei
- 18% Preț: 805.44 lei
- 18% Preț: 1110.72 lei
- 18% Preț: 947.35 lei
- Preț: 390.84 lei
- 15% Preț: 648.56 lei
- 18% Preț: 951.91 lei
- 15% Preț: 637.13 lei
- 18% Preț: 793.63 lei
- Preț: 391.02 lei
- Preț: 401.42 lei
- 15% Preț: 639.08 lei
- 18% Preț: 733.33 lei
- 18% Preț: 785.11 lei
- 15% Preț: 593.42 lei
- 18% Preț: 1114.96 lei
- 15% Preț: 643.16 lei
- Preț: 390.63 lei
- 15% Preț: 645.60 lei
- 15% Preț: 641.71 lei
- 18% Preț: 954.62 lei
- 15% Preț: 645.14 lei
- 18% Preț: 947.50 lei
- 18% Preț: 804.96 lei
- 15% Preț: 644.63 lei
- 20% Preț: 469.59 lei
- 20% Preț: 581.39 lei
Preț: 952.40 lei
Preț vechi: 1161.47 lei
-18% Nou
Puncte Express: 1429
Preț estimativ în valută:
182.29€ • 189.59$ • 152.76£
182.29€ • 189.59$ • 152.76£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387904559
ISBN-10: 0387904557
Pagini: 325
Ilustrații: X, 325 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.64 kg
Ediția:1980
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
ISBN-10: 0387904557
Pagini: 325
Ilustrații: X, 325 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.64 kg
Ediția:1980
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I Newton’s Method and the Gradient Method.- 1 Introduction.- 2 Fundamental Concepts.- 3 Iterative Methods for Solving g(x) = 0.- 4 Convergence Theorems.- 5 Minimization of Functions by Newton’s Method.- 6 Gradient Methods—The Quadratic Case.- 7 General Descent Methods.- 8 Iterative Methods for Solving Linear Equations.- 9 Constrained Minima.- II Conjugate Direction Methods.- 1 Introduction.- 2 Quadratic Functions on En.- 3 Basic Properties of Quadratic Functions.- 4 Minimization of a Quadratic Function F on k-Planes.- 5 Method of Conjugate Directions (CD-Method).- 6 Method of Conjugate Gradients (CG-Algorithm).- 7 Gradient PARTAN.- 8 CG-Algorithms for Nonquadratic Functions.- 9 Numerical Examples.- 10 Least Square Solutions.- III Conjugate Gram-Schmidt Processes.- 1 Introduction.- 2 A Conjugate Gram-Schmidt Process.- 3 CGS-CG-Algorithms.- 4 A Connection of CGS-Algorithms with Gaussian Elimination.- 5 Method of Parallel Displacements.- 6 Methods of Parallel Planes (PARP).- 7 Modifications of Parallel Displacements Algorithms.- 8 CGS-Algorithms for Nonquadratic Functions.- 9 CGS-CG-Routines for Nonquadratic Functions.- 10 Gauss-Seidel CGS-Routines.- 11 The Case of Nonnegative Components.- 12 General Linear Inequality Constraints.- IV Conjugate Gradient Algorithms.- 1 Introduction.- 2 Conjugate Gradient Algorithms.- 3 The Normalized CG-Algorithm.- 4 Termination.- 5 Clustered Eigenvalues.- 6 Nonnegative Hessians.- 7 A Planar CG-Algorithm.- 8 Justification of the Planar CG-Algorithm.- 9 Modifications of the CG-Algorithm.- 10 Two Examples.- 11 Connections between Generalized CG-Algorithms and Stadard CG- and CD-Algorithm.- 12 Least Square Solutions.- 13 Variable Metric Algorithms.- 14 A Planar CG-Algorithm for Nonquadratic Functions.- References.