Conformal Description of Spinning Particles: Trieste Notes in Physics
Autor Ivan T. Todoroven Limba Engleză Paperback – sep 1986
Preț: 618.00 lei
Preț vechi: 727.05 lei
-15% Nou
Puncte Express: 927
Preț estimativ în valută:
118.26€ • 124.89$ • 98.41£
118.26€ • 124.89$ • 98.41£
Carte tipărită la comandă
Livrare economică 11-25 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540168904
ISBN-10: 3540168907
Pagini: 84
Ilustrații: VIII, 76 p.
Dimensiuni: 170 x 244 x 4 mm
Greutate: 0.15 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Trieste Notes in Physics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540168907
Pagini: 84
Ilustrații: VIII, 76 p.
Dimensiuni: 170 x 244 x 4 mm
Greutate: 0.15 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Trieste Notes in Physics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
A Guide to the List of References.- 1. The Conformal Group of a Conformally Flat Space Time and Its Twistor Representations.- 1.1 Conformal Classes of Pseudo-Riemannian Metrics.- 1.2 Connection and Curvature Forms — a Recapitulation. The Weyl Curvature Tensor.- 1.3 Global Conformal Transformations in Compactified Minkowski Space. Conformal Invariant Local Causal Order on $$ \overline {\text{M}} $$.- 1.4 The Lie Algebra of the Conformal Group and Its Twistor Representations.- 2. Twistor Flag Manifolds and SU(2,2) Orbits.- 2.1 Seven Flag Manifolds in Twistor Space. Conformal Orbits in F1 =PT.- 2.2 Points of Compactified Space-Time as 2-Planes in Twistor Space.- 2.3 An Alternative Realization of the Isomorphism $$ \overline {{\text{CM}}} \Leftrightarrow {{\text{F}}_2} $$ SU(2,2) Orbits in the Grassmann Manifold.- 2.4 Higher Flag Manifolds.- 3. Classical Phase Space of Conformal Spinning Particles.- 3.1 The Conformal Orbits F1+ and F1? as Phase Spaces of Negative and Positive Helicity O-Mass Particles.- 3.2 Canonical Symplectic Structure on Twistor Space; a Unified Phase Space Picture for Free O-Mass Particles.- 3.3 The Phase Space of Spinless Positive Mass “Conformal Particles”.- 3.4 The 10-Dimensional Phase Space of a Timelike Spinning Particle.- 3.5 The 12-Dimensional Phase Space F1,2,3?.- 4. Twistor Description of Classical Zero Mass Fields.- 4.1 Quantization of a Zero Mass Particle System: The Ladder Representations of U(2,2).- 4.2 Local Zero Mass Fields. Second Quantization.- 4.3 The Neutrino and the Photon Fields in the Twistor Picture.- 4.4 Remark on the Quantization of Higher-Dimensional Conformal Orbits.- Appendix A.Clifford Algebra Approach to Twistors. Relation to Dirac Spinors.- A.1 Clifford Algebra of O(6,?) and Bitwistor Representation of theLie Algebra SO(6,?).- A.2 The Homomorphism SL(4,?) ? SO(6,?). Inequivalent 4-Dimensional Analytic Representations of SL(4,?).- A.3 Conformal Dirac Spinors.- References.