Cantitate/Preț
Produs

The Spinorial Chessboard: Trieste Notes in Physics

Autor Paolo Budinich, Andrzej Trautman
en Limba Engleză Paperback – 20 iun 1988
Spinor theory is an important tool in mathematical physics in particular in the context of conformal field theory and string theory. These lecture notes present a new way to introduce spinors by exploiting their intimate relationship to Clifford algebras. The presentation is detailed and mathematically rigorous. Not only students but also researchers will welcome this book for the clarity of its style and for the straightforward way it applies mathematical concepts to physical theory.
Citește tot Restrânge

Din seria Trieste Notes in Physics

Preț: 62318 lei

Preț vechi: 73315 lei
-15% Nou

Puncte Express: 935

Preț estimativ în valută:
11930 12269$ 9897£

Carte tipărită la comandă

Livrare economică 19 februarie-05 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540190783
ISBN-10: 3540190783
Pagini: 140
Ilustrații: VIII, 128 p.
Dimensiuni: 170 x 244 x 7 mm
Greutate: 0.24 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Trieste Notes in Physics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1. Introduction.- 1.1 A Little History.- 1.2 Null Elements and Simple Spinors.- 1.3 About the Present Work.- 1.4 Motivation and Outlook.- 2. Notation and Terminology.- 3. Vector Spaces and Inner Products.- 3.1 Complex Structure in a Real Vector Space.- 3.2 Quaternionic Structure in a Real Vector Space.- 3.3 Complex Conjugation and Hermitean Forms.- 3.4 Real and Quaternionic Structures in a Complex Vector Space.- 3.5 Inner Products in Vector Spaces.- 4. Algebras and Their Representations.- 4.1 Definitions.- 4.2 Simple Algebras.- 4.3 Antiautomorphisms and Inner Products.- 4.4 Real Algebras.- 4.5 Graded Algebras.- 5. General Properties of Clifford Algebras.- 5.1 Definition and General Properties of Clifford Algebras.- 5.2 The Vector Space Structure of Clifford Algebras.- 5.3 The Graded Structure of Clifford Algebras.- 5.4 The Volume Element and Hodge Duality.- 5.5 Relation Between the Clifford Algebras of Vector Spaces of Adjacent Dimension.- 6. Complex Clifford Algebras.- 6.1 Dirac and Weyl Spinors.- 6.2 The Inner Products.- 6.3 Extensions of Representations.- 6.4 The Wall Groups.- 7. Real Clifford Algebras.- 7.1 The Index Periodicity.- 7.2 Charge Conjugation and Majorana Spinors.- 7.3 The Dirac Forms.- 7.4 Clifford Algebras of Euclidean Spaces.- 7.5 The Spinorial Chessboard.- 7.6 Summary.- References.

Caracteristici

Includes supplementary material: sn.pub/extras