Cantitate/Preț
Produs

Conformal Groups and Related Symmetries Physical Results and Mathematical Background: Proceedings of a Symposium Held at the Arnold Sommerfeld Institute for Mathematical Physics (ASI) Technical University of Clausthal, Germany August 12–14, 1985: Lecture Notes in Physics, cartea 261

Editat de A. O. Barut, Heinz D. Doebner
en Limba Engleză Paperback – 17 apr 2014

Din seria Lecture Notes in Physics

Preț: 64037 lei

Preț vechi: 75339 lei
-15% Nou

Puncte Express: 961

Preț estimativ în valută:
12259 12608$ 10170£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662144824
ISBN-10: 3662144824
Pagini: 446
Ilustrații: VI, 446 p. 3 illus.
Dimensiuni: 170 x 244 x 25 mm
Greutate: 0.72 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Physics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

From Heisenberg algebra to conformal dynamical group.- $$\overline {SL}$$ (4,R) dynamical symmetry for hadrons.- A new quantum relativistic oscillator and the hadron mass spectrum.- Path integral realization of a dynamical group.- Polynomial identities associated with dynamical symmetries.- De — sitter representations and the particle concept, studied in an ur-theoretical cosmological model.- The structure of local algebras in quantum field theory.- Does supergravity allow a positive cosmological constant.- Photons and gravitons in conformal field theory.- On conformally covariant energy momentum tensor and vacuum solutions.- The holonomy operator in Yang-Mills theory.- Conformal geodesics.- Second order conformal structures.- The conformal structure of Einstein's field equations.- Nonrelativistic conformal symetries and Bargmann structures.- Wave equations for conformal multispinors.- Global conformal transformations of spinor fields.- Pure spinors for conformal extensions of space-time.- Complex Clifford analysis over the Lie ball.- Plancherel theorem for the universal cover of the conformal group.- Harmonic analysis on rank one symmetric spaces.- A spin-off from highest weight representations; conformal covariants, in particular for 0(3,2).- Tensor calculus in enveloping algebras.- Representations of the Lorentz Algebra on the space of its universal enveloping algebra.- Reducible representations of the extended conformal superalgebra and invariant differential operators.- All positive energy unitary irreducible representations of the extended conformal superalgebra.- The two-dimensional quantum conformal group, strings and lattices.- Finite-size scaling and irreducible representations of virasoro algebras.- Unitarizable highest weight representations of theVirasoro, Neveu-Schwarz and Ramond algebras.- Structure of Kac-Moody groups.- Infinite dimensional lie algebras connected with the four-dimensional laplace operator.- Infinite dimensional lie algebras in conformal QFT models.