Cantitate/Preț
Produs

Content-Based Image and Video Retrieval: Multimedia Systems and Applications, cartea 21

Autor Oge Marques, Borko Furht
en Limba Engleză Hardback – 30 apr 2002
Content-Based Image And Video Retrieval addresses the basic concepts and techniques for designing content-based image and video retrieval systems. It also discusses a variety of design choices for the key components of these systems. This book gives a comprehensive survey of the content-based image retrieval systems, including several content-based video retrieval systems. The survey includes both research and commercial content-based retrieval systems. Content-Based Image And Video Retrieval includes pointers to two hundred representative bibliographic references on this field, ranging from survey papers to descriptions of recent work in the area, entire books and more than seventy websites. Finally, the book presents a detailed case study of designing MUSE–a content-based image retrieval system developed at Florida Atlantic University in Boca Raton, Florida.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 98221 lei  43-57 zile
  Springer Us – 9 noi 2012 98221 lei  43-57 zile
Hardback (1) 98881 lei  43-57 zile
  Springer Us – 30 apr 2002 98881 lei  43-57 zile

Din seria Multimedia Systems and Applications

Preț: 98881 lei

Preț vechi: 123601 lei
-20% Nou

Puncte Express: 1483

Preț estimativ în valută:
18923 19636$ 15816£

Carte tipărită la comandă

Livrare economică 17-31 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781402070044
ISBN-10: 1402070047
Pagini: 204
Ilustrații: XIII, 182 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.47 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria Multimedia Systems and Applications

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Introduction.- 2. Fundamentals of Content-Based Image and Video Retrieval.- 1. Basic Concepts.- 2. A Typical CBIVR System Architecture.- 3. The User’s Perspective.- 4. Summary.- 3. Designing a Content-Based Image Retrieval System.- 1. Feature Extraction and Representation.- 2. Similarity Measurements.- 3. Dimension Reduction and High-dimensional Indexing.- 4. Clustering.- 5. The Semantic Gap.- 6. Learning.- 7. Relevance Feedback (RF).- 8. Benchmarking CBVIR Solutions.- 9. Design Questions.- 10. Summary.- 4. Designing a Content-Based Video Retrieval System.- 1. The Problem.- 2. The Solution.- 3. Video Parsing.- 4. Video Abstraction and Summarization.- 5. Video Content Representation, Indexing, and Retrieval.- 6. Video Browsing Schemes.- 7. Examples of Video Retrieval Systems.- 8. Summary.- 5. A Survey of Content-Based Image Retrieval Systems.- 1. Introduction.- 2. Criteria.- 3. Systems.- 4. Summary and Conclusions.- 6. Case Study: Muse.- 1. Overview of the System.- 2. The User’s Perspective.- 3. The RF Mode.- 4. The RFC Mode.- 5. Experiments and Results.- 6. Summary.- 7. Future Work.- References.