Continuous Quantum Measurements and Path Integrals
Autor M.B Menskyen Limba Engleză Hardback – 1993
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 365.19 lei 6-8 săpt. | |
CRC Press – 5 sep 2019 | 365.19 lei 6-8 săpt. | |
Hardback (1) | 1147.66 lei 6-8 săpt. | |
CRC Press – 1993 | 1147.66 lei 6-8 săpt. |
Preț: 1147.66 lei
Preț vechi: 1555.19 lei
-26% Nou
Puncte Express: 1721
Preț estimativ în valută:
219.65€ • 231.72$ • 183.04£
219.65€ • 231.72$ • 183.04£
Carte tipărită la comandă
Livrare economică 03-17 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780750302289
ISBN-10: 0750302283
Pagini: 188
Dimensiuni: 156 x 234 x 17 mm
Greutate: 0.48 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 0750302283
Pagini: 188
Dimensiuni: 156 x 234 x 17 mm
Greutate: 0.48 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Public țintă
Academic and Professional Practice & DevelopmentCuprins
Introduction to Continuous Quantum Measurements. Instantaneous and Sequential Measurements. Technique of Path Integrals. Continuous Measurement and Evolution of the Measured System. Continuous Measurements of Oscillators. Continuous Quantum Nondemolition Measurements. Measurement of an Electromagnetic Field. Time in Quantum Cosmology. The Action Uncertainty Principle. Group-Theoretical Structure of Quantum Continuous Measurements. Paths and Measurements: Further Development. References.
Descriere
Continuous Quantum Measurements and Path Integrals examines continuous quantum measurements using Feynman path integrals. The path integral theory is developed to provide formulae for concrete physical effects. The main conclusion drawn from the theory is that an uncertainty principle exists for processes, in addition to the familiar one for states. This implies that a continuous measurement has an optimal accuracy-a balance between inefficient error and large quantum fluctuations (quantum noise). A well-known expert in the field, the author concentrates on the physical and conceptual side of the subject rather than the mathematical.