Cantitate/Preț
Produs

Control Theory for Distributed Parameter Systems and Applications: Lecture Notes in Control and Information Sciences, cartea 54

Editat de F. Kappel, K. Kunisch, W. Schappacher
en Limba Engleză Paperback – iun 1983

Din seria Lecture Notes in Control and Information Sciences

Preț: 38033 lei

Nou

Puncte Express: 570

Preț estimativ în valută:
7279 7561$ 6046£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540125549
ISBN-10: 354012554X
Pagini: 260
Ilustrații: VII, 249 p. 2 illus.
Dimensiuni: 170 x 244 x 14 mm
Greutate: 0.42 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Control and Information Sciences

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

The mathematical structure of the feedback control problem for linear distributed parameter systems with finite-dimensional controllers.- Inverse problems for hyperbolic systems with unknown boundary parameters.- Boundary control of some free boundary problems.- Finite dimensional compensators for nonlinear infinite dimensional systems.- Finite dimensional compensators for some hyperbolic systems with boundary control.- Direct solution of the bellmann equation for a stochastic control problem.- Degenerate differential equations and applications.- The numerical solution of differential equations arising in control theory for lumped and distributed parameter systems.- On time-optimal boundary control of vibrating beams.- An L2 theory for the quadratic optimal cost problem of hyperbolic equations with control in the dirichlet B.C..- On the identifiability of parameters in distributed systems.- The pole and zero structure of a class of linear systems.- Optimal control of rotation of a flexible arm.- Neutral functional differential equations and semigroups of operators.- Boundary observation and control of a vibrating plate: a preliminary report.- Boundary feedback stabilization for a quasi-linear wave equation.- Boundary feedback stabilization problems for hyperbolic equations.