Coxeter Graphs and Towers of Algebras: Mathematical Sciences Research Institute Publications, cartea 14
Autor Frederick M. Goodman, Pierre de la Harpe, Vaughan F. R. Jonesen Limba Engleză Paperback – 14 dec 2011
Din seria Mathematical Sciences Research Institute Publications
- Preț: 460.54 lei
- Preț: 352.67 lei
- Preț: 442.20 lei
- 14% Preț: 788.66 lei
- 18% Preț: 886.43 lei
- 15% Preț: 638.76 lei
- 18% Preț: 781.77 lei
- 15% Preț: 644.30 lei
- 15% Preț: 644.63 lei
- Preț: 401.61 lei
- 18% Preț: 1224.68 lei
- 15% Preț: 637.13 lei
- 18% Preț: 790.14 lei
- 15% Preț: 644.82 lei
- 18% Preț: 954.93 lei
- 18% Preț: 1000.39 lei
- 15% Preț: 656.43 lei
- 15% Preț: 652.31 lei
- Preț: 385.08 lei
- 15% Preț: 635.31 lei
- 18% Preț: 725.13 lei
- 15% Preț: 647.08 lei
- 15% Preț: 639.73 lei
- Preț: 429.70 lei
- Preț: 452.07 lei
- 15% Preț: 650.37 lei
- Preț: 448.23 lei
- Preț: 349.91 lei
- Preț: 353.10 lei
- Preț: 429.00 lei
- Preț: 315.54 lei
- Preț: 310.97 lei
- Preț: 465.54 lei
- Preț: 352.50 lei
- Preț: 345.59 lei
- 18% Preț: 955.40 lei
Preț: 727.00 lei
Preț vechi: 886.59 lei
-18% Nou
Puncte Express: 1091
Preț estimativ în valută:
139.15€ • 143.40$ • 117.47£
139.15€ • 143.40$ • 117.47£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461396437
ISBN-10: 1461396433
Pagini: 304
Ilustrații: X, 288 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Springer
Colecția Springer
Seria Mathematical Sciences Research Institute Publications
Locul publicării:New York, NY, United States
ISBN-10: 1461396433
Pagini: 304
Ilustrații: X, 288 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Springer
Colecția Springer
Seria Mathematical Sciences Research Institute Publications
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Matrices over the natural numbers: values of the norm, classification, and variations.- 1.1. Introduction.- 1.2. Proof of Kronecker’s theorem.- 1.3. Decomposability and pseudo-equivalence.- 1.4. Graphs with norms no larger than 2.- 1.5. The set E of norms of graphs and integral matrices.- 2. Towers of multi-matrix algebras.- 2.1. Introduction.- 2.2. Commutant and bicommutant.- 2.3. Inclusion matrix and Bratteli diagram for inclusions of multi-matrix algebras.- 2.4. The fundamental construction and towers for multi-matrix algebras.- 2.5. Traces.- 2.6. Conditional expectations.- 2.7. Markov traces on pairs of multi-matrix algebras.- 2.8. The algebras A?,k for generic ?.- 2.9. An approach to the non-generic case.- 2.10. A digression on Hecke algebras.- 2.11. The relationship between A?,n and the Hecke algebras.- 3. Finite von Neumann algebras with finite dimensional centers.- 3.1. Introduction.- 3.2. The coupling constant: definition.- 3.3. The coupling constant: examples.- 3.4. Indexfor subfactors of II1 factors.- 3.5. Inclusions of finite von Neumann algebras with finite dimensional centers.- 3.6. The fundamental construction.- 3.7. Markov traces on EndN(M), a generalization of index.- 4. Commuting squares, subfactors, and the derived tower.- 4.1. Introduction.- 4.2. Commuting squares.- 4.3. Wenzl’s index formula.- 4.4. Examples of irreducible pairs of factors of index less than 4, and a lemma of C. Skau.- 4.5. More examples of irreducible paris of factors, and the index value 3 + 31/2.- 4.6. The derived tower and the Coxeter invariant.- 4.7. Examples of derived towers.- Appendix I. Classification of Coxeter graphs with spectral radius just beyond the Kronecker range.- I.1. The results.- I.2. Computations of characteristic polynomials for ordinary graphs.- I.3. Proofs of theorems I.1.2 and I.1.3.- Appendix II.a. Complex semisimple algebras and finite dimensional C*-algebras.- Appendix III. Hecke groups and other subgroups of PSL(2,?) generated by parabolic pairs.- References.