Creating New Medical Ontologies for Image Annotation: A Case Study: SpringerBriefs in Electrical and Computer Engineering
Autor Liana Stanescu, Dumitru Dan Burdescu, Marius Brezovan, Cristian Gabriel Mihaien Limba Engleză Paperback – 15 dec 2011
In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system: Cross Media Relevance Models. Based on a text query the system will retrieve the images that contain objects described by the keywords.
Din seria SpringerBriefs in Electrical and Computer Engineering
- Preț: 372.44 lei
- Preț: 369.78 lei
- Preț: 370.52 lei
- 20% Preț: 229.91 lei
- Preț: 369.62 lei
- 20% Preț: 371.46 lei
- Preț: 370.52 lei
- 20% Preț: 227.70 lei
- Preț: 369.62 lei
- 20% Preț: 226.71 lei
- Preț: 373.35 lei
- Preț: 369.62 lei
- Preț: 370.36 lei
- Preț: 435.78 lei
- Preț: 374.69 lei
- Preț: 370.52 lei
- Preț: 371.32 lei
- 20% Preț: 227.70 lei
- Preț: 369.23 lei
- Preț: 369.62 lei
- Preț: 369.78 lei
- Preț: 369.62 lei
- Preț: 368.87 lei
- Preț: 370.94 lei
- 20% Preț: 314.73 lei
- 20% Preț: 314.73 lei
- Preț: 370.15 lei
- Preț: 334.92 lei
- Preț: 337.37 lei
- Preț: 371.48 lei
- 20% Preț: 318.12 lei
- Preț: 369.99 lei
- Preț: 371.10 lei
- 20% Preț: 315.19 lei
- 20% Preț: 226.16 lei
- Preț: 366.78 lei
- Preț: 367.91 lei
- Preț: 352.83 lei
- Preț: 373.76 lei
- Preț: 370.73 lei
- Preț: 368.67 lei
- 20% Preț: 317.47 lei
- Preț: 372.44 lei
- Preț: 368.08 lei
- Preț: 369.62 lei
- 5% Preț: 354.53 lei
- Preț: 370.52 lei
- Preț: 367.53 lei
- Preț: 368.67 lei
Preț: 334.92 lei
Nou
Puncte Express: 502
Preț estimativ în valută:
64.09€ • 67.43$ • 53.06£
64.09€ • 67.43$ • 53.06£
Carte tipărită la comandă
Livrare economică 14-28 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461419082
ISBN-10: 1461419085
Pagini: 120
Ilustrații: VIII, 111 p. 27 illus., 10 illus. in color.
Dimensiuni: 155 x 235 x 6 mm
Greutate: 0.11 kg
Ediția:2012
Editura: Springer
Colecția Springer
Seria SpringerBriefs in Electrical and Computer Engineering
Locul publicării:New York, NY, United States
ISBN-10: 1461419085
Pagini: 120
Ilustrații: VIII, 111 p. 27 illus., 10 illus. in color.
Dimensiuni: 155 x 235 x 6 mm
Greutate: 0.11 kg
Ediția:2012
Editura: Springer
Colecția Springer
Seria SpringerBriefs in Electrical and Computer Engineering
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Content Based Image Retrieval in Medical Images Databases.- Medical Images Segmentation.- Ontologies.- Medical Images Annotation.- Semantic Based Image Retrieval.- Object Oriented Medical Annotation System.
Textul de pe ultima copertă
Creating New Medical Ontologies for Image Annotation focuses on the problem of the medical images automatic annotation process, which is solved in an original manner by the authors. All the steps of this process are described in detail with algorithms, experiments and results. The original algorithms proposed by authors are compared with other efficient similar algorithms.
In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system: Cross Media Relevance Models. Based on a text query the system will retrieve the images that contain objects described by the keywords.
In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system: Cross Media Relevance Models. Based on a text query the system will retrieve the images that contain objects described by the keywords.
Caracteristici
Introduces a new algorithm for color images segmentation, based on a hexagonal grid, with very good results Covers a high number of experiments effectuated on a database with thousands of color medical images from digestive tract that are rarely used in medical annotation systems Annotation system uses an object-oriented model of the medical images database