Cantitate/Preț
Produs

Cryptographic Applications of Analytic Number Theory: Complexity Lower Bounds and Pseudorandomness: Progress in Computer Science and Applied Logic, cartea 22

Autor Igor Shparlinski
en Limba Engleză Paperback – 3 oct 2013
The book introduces new techniques that imply rigorous lower bounds on the com­ plexity of some number-theoretic and cryptographic problems. It also establishes certain attractive pseudorandom properties of various cryptographic primitives. These methods and techniques are based on bounds of character sums and num­ bers of solutions of some polynomial equations over finite fields and residue rings. Other number theoretic techniques such as sieve methods and lattice reduction algorithms are used as well. The book also contains a number of open problems and proposals for further research. The emphasis is on obtaining unconditional rigorously proved statements. The bright side of this approach is that the results do not depend on any assumptions or conjectures. On the downside, the results are much weaker than those which are widely believed to be true. We obtain several lower bounds, exponential in terms of logp, on the degrees and orders of o polynomials; o algebraic functions; o Boolean functions; o linear recurrence sequences; coinciding with values of the discrete logarithm modulo a prime p at sufficiently many points (the number of points can be as small as pI/2+O:). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the rightmost bit of the discrete logarithm and defines whether the argument is a quadratic residue.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61263 lei  6-8 săpt.
  Birkhäuser Basel – 3 oct 2013 61263 lei  6-8 săpt.
Hardback (1) 61868 lei  6-8 săpt.
  Birkhäuser Basel – 11 dec 2002 61868 lei  6-8 săpt.

Din seria Progress in Computer Science and Applied Logic

Preț: 61263 lei

Preț vechi: 72074 lei
-15% Nou

Puncte Express: 919

Preț estimativ în valută:
11729 12708$ 9794£

Carte tipărită la comandă

Livrare economică 12-26 decembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783034894159
ISBN-10: 3034894155
Pagini: 428
Ilustrații: IX, 414 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Computer Science and Applied Logic

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

I Preliminaries.- 1 Basic Notation and Definitions.- 2 Polynomials and Recurrence Sequences.- 3 Exponential Sums.- 4 Distribution and Discrepancy.- 5 Arithmetic Functions.- 6 Lattices and the Hidden Number Problem.- 7 Complexity Theory.- II Approximation and Complexity of the Discrete Logarithm.- 8 Approximation of the Discrete Logarithm Modulop.- 9 Approximation of the Discrete Logarithm Modulop -1.- 10 Approximation of the Discrete Logarithm by Boolean Functions.- 11 Approximation of the Discrete Logarithm by Real Polynomials.- III Approximation and Complexity of the Diffie-Hellman Secret Key.- 12 Polynomial Approximation and Arithmetic Complexity of the.- Diffie-Hellman Secret Key.- 13 Boolean Complexity of the Diffie-Hellman Secret Key.- 14 Bit Security of the Diffie-Hellman Secret Key.- IV Other Cryptographic Constructions.- 15 Security Against the Cycling Attack on the RSA and Timed-release Crypto.- 16 The Insecurity of the Digital Signature Algorithm with Partially Known Nonces.- 17 Distribution of the ElGamal Signature.- 18 Bit Security of the RSA Encryption and the Shamir Message Passing Scheme.- 19 Bit Security of the XTR and LUC Secret Keys.- 20 Bit Security of NTRU.- 21 Distribution of the RSA and Exponential Pairs.- 22 Exponentiation and Inversion with Precomputation.- V Pseudorandom Number Generators.- 23 RSA and Blum-Blum-Shub Generators.- 24 Naor-Reingold Function.- 25 1/M Generator.- 26 Inversive, Polynomial and Quadratic Exponential Generators.- 27 Subset Sum Generators.- VI Other Applications.- 28 Square-Freeness Testing and Other Number-Theoretic Problems.- 29 Trade-off Between the Boolean and Arithmetic Depths of ModulopFunctions.- 30 Polynomial Approximation, Permanents and Noisy Exponentiation in Finite Fields.- 31 Special Polynomials and BooleanFunctions.- VII Concluding Remarks and Open Questions.

Recenzii

From the reviews:
“Igor Shparlinski is a very prolific mathematician and computer scientist … . The book is written at a very high level, suitable for graduate students and researchers in computer science and mathematics. … book has a unique perspective, and is not really comparable to other books in the area. … book contains many deep results, and the mathematically-sophisticated reader can find much that is novel. … this is an impressive work that will be of significant interest to researchers in cryptography and algorithmic number theory.” (Jeffrey Shallit, SIGACT News, Vol. 41 (3), September, 2010)

Textul de pe ultima copertă

The book introduces new ways of using analytic number theory in cryptography and related areas, such as complexity theory and pseudorandom number generation.
Key topics and features:
- various lower bounds on the complexity of some number theoretic and cryptographic problems, associated with classical schemes such as RSA, Diffie-Hellman, DSA as well as with relatively new schemes like XTR and NTRU
- a series of very recent results about certain important characteristics (period, distribution, linear complexity) of several commonly used pseudorandom number generators, such as the RSA generator, Blum-Blum-Shub generator, Naor-Reingold generator, inversive generator, and others
- one of the principal tools is bounds of exponential sums, which are combined with other number theoretic methods such as lattice reduction and sieving
- a number of open problems of different level of difficulty and proposals for further research
- an extensive and up-to-date bibliography
Cryptographers and number theorists will find this book useful. The former can learn about new number theoretic techniques which have proved to be invaluable cryptographic tools, the latter about new challenging areas of applications of their skills.