Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading: Advanced Ceramics and Composites, cartea 2
Autor Longbiao Lien Limba Engleză Paperback – 10 iun 2022
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1103.93 lei 6-8 săpt. | |
Springer Nature Singapore – 10 iun 2022 | 1103.93 lei 6-8 săpt. | |
Hardback (1) | 1109.92 lei 6-8 săpt. | |
Springer Nature Singapore – 9 iun 2021 | 1109.92 lei 6-8 săpt. |
Preț: 1103.93 lei
Preț vechi: 1346.26 lei
-18% Nou
Puncte Express: 1656
Preț estimativ în valută:
211.34€ • 220.51$ • 177.16£
211.34€ • 220.51$ • 177.16£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811621437
ISBN-10: 9811621438
Ilustrații: XI, 197 p. 103 illus., 98 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.3 kg
Ediția:1st ed. 2021
Editura: Springer Nature Singapore
Colecția Springer
Seria Advanced Ceramics and Composites
Locul publicării:Singapore, Singapore
ISBN-10: 9811621438
Ilustrații: XI, 197 p. 103 illus., 98 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.3 kg
Ediția:1st ed. 2021
Editura: Springer Nature Singapore
Colecția Springer
Seria Advanced Ceramics and Composites
Locul publicării:Singapore, Singapore
Cuprins
Tensile Damage and Fracture of Ceramic-Matrix Composites subjected to Stochastic Loading.- Hysteresis Loops of Ceramic-Matrix Composites subjected to Stochastic Loading.- Stress-rupture of Ceramic-Matrix Composites under Stochastic Loading at Intermediate Temperature.- Fatigue Life of Ceramic-Matrix Composites subjected to Stochastic Loading at Elevated Temperature.- Fatigue Damage and Fracture of Ceramic-Matrix Composites subjected to Stochastic Loading.
Notă biografică
Dr. Longbiao Li is a lecturer in the College of Civil Aviation at the Nanjing University of Aeronautics and Astronautics. Dr. Li’s research focuses on the vibration, fatigue, damage, fracture, reliability, safety, and durability of aircraft and aero engine. In this research area, he is the first author of 162 SCI journal publications, 5 monographs, 2 edited books, 3 textbooks, 3 book chapters, 20 Chinese patents, 2 US patents, and more than 20 refereed conference papers. He has been involved in different projects related to structural damage, reliability, and airworthiness design for aircraft and aero engines, supported by the Natural Science Foundation of China, COMAC Company, and AECC Commercial Aircraft Engine Company.
Textul de pe ultima copertă
This book presents the relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 - 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. This book investigates damage and fracture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading, including: (1) tensile damage and fracture of fiber-reinforced CMCs subjected to stochastic loading; (2) fatigue hysteresis loops of fiber-reinforced CMCs subjected to stochastic loading; (3) stress rupture of fiber-reinforced CMCs with stochastic loading at intermediate temperature; (4) fatigue life prediction of fiber-reinforced CMCssubjected to stochastic overloading stress at elevated temperature; and (5) fatigue limit stress prediction of fiber-reinforced CMCs with stochastic loading. This book helps the material scientists and engineering designers to understand and master the damage and fracture of ceramic-matrix composites under stochastic loading.
Caracteristici
Provides micromechanical models for tensile, fatigue, and stress-rupture behavior of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading Predicts experimental results of different CMCs (e.g., unidirectional, cross-ply, 2D woven, 2.5D woven, and 3D C/SiC or SiC/SiC) using the developed micromechanical models Establishes relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress