Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data
Autor J. Nathan Kutzen Limba Engleză Paperback – 8 aug 2013
Toate formatele și edițiile
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 353.09 lei 10-17 zile | +78.22 lei 6-12 zile |
Oxford University Press – 8 aug 2013 | 353.09 lei 10-17 zile | +78.22 lei 6-12 zile |
Hardback (1) | 718.76 lei 31-38 zile | |
OUP OXFORD – 8 aug 2013 | 718.76 lei 31-38 zile |
Preț: 353.09 lei
Preț vechi: 373.75 lei
-6% Nou
Puncte Express: 530
Preț estimativ în valută:
67.56€ • 70.54$ • 55.92£
67.56€ • 70.54$ • 55.92£
Carte disponibilă
Livrare economică 03-10 martie
Livrare express 27 februarie-05 martie pentru 88.21 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780199660346
ISBN-10: 0199660344
Pagini: 656
Ilustrații: 200 b/w line drawings, 20 b/w halftones
Dimensiuni: 191 x 245 x 31 mm
Greutate: 1.36 kg
Editura: Oxford University Press
Colecția OUP Oxford
Locul publicării:Oxford, United Kingdom
ISBN-10: 0199660344
Pagini: 656
Ilustrații: 200 b/w line drawings, 20 b/w halftones
Dimensiuni: 191 x 245 x 31 mm
Greutate: 1.36 kg
Editura: Oxford University Press
Colecția OUP Oxford
Locul publicării:Oxford, United Kingdom
Recenzii
The book allows methods for dealing with large data to be explained in a logical process suitable for both undergraduate and post-graduate students ... With sport performance analysis evolving into deal with big data, the book forms a key bridge between mathematics and sport science
Notă biografică
Professor Kutz is the Robert Bolles and Yasuko Endo Professor of Applied Mathematics at the University of Washington. Prof. Kutz was awarded the B.S. in physics and mathematics from the University of Washington (Seattle, WA) in 1990 and the PhD in Applied Mathematics from Northwestern University (Evanston, IL) in 1994. He joined the Department of Applied Mathematics, University of Washington in 1998 and became Chair in 2007.Professor Kutz is especially interested in a unified approach to applied mathematics that includes modeling, computation and analysis. His area of current interest concerns phenomena in complex systems and data analysis (dimensionality reduction, compressive sensing, machine learning), neuroscience (neuro-sensory systems, networks of neurons), and the optical sciences (laser dynamics and modelocking, solitons, pattern formation in nonlinear optics).