Cantitate/Preț
Produs

Data Science and Big Data Computing: Frameworks and Methodologies

Editat de Zaigham Mahmood
en Limba Engleză Hardback – 12 iul 2016
This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 76091 lei  6-8 săpt.
  Springer International Publishing – 31 mai 2018 76091 lei  6-8 săpt.
Hardback (1) 76689 lei  6-8 săpt.
  Springer International Publishing – 12 iul 2016 76689 lei  6-8 săpt.

Preț: 76689 lei

Preț vechi: 93522 lei
-18% Nou

Puncte Express: 1150

Preț estimativ în valută:
14678 15298$ 12219£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319318592
ISBN-10: 3319318594
Pagini: 332
Ilustrații: XXI, 319 p. 68 illus.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.66 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

Part I: Data Science Applications and Scenarios.- An Interoperability Framework and Distributed Platform for Fast Data Applications.- Complex Event Processing Framework for Big Data Applications.- Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios.- Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted Graphs: A Big Data Perspective.- Part II: Big Data Modelling and Frameworks.- A Unified Approach to Data Modelling and Management in Big Data Era.- Interfacing Physical and Cyber Worlds: A Big Data Perspective.- Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data.- An Analytics Driven Approach to Identify Duplicate Bug Records in Large Data Repositories.- Part III: Big Data Tools and Analytics.- Large Scale Data Analytics Tools: Apache Hive, Pig and HBase.- Big Data Analytics: Enabling Technologies and Tools.- A Framework for Data Mining and Knowledge Discovery in Cloud Computing.- Feature Selection for Adaptive Decision Making in Big Data Analytics.- Social Impact and Social Media Analysis Relating to Big Data.

Recenzii

“This title presents recent research and future trends in the area of big data. … It will be of value to students and researchers looking for research topics and to data scientists exploring ongoing work in the field of big data. Summing Up: Recommended. Graduate students; faculty and professionals.” (C. Tappert, Choice, Vol. 54 (7), March, 2017)

Notă biografică

Professor Zaigham Mahmood is a Senior Technology Consultant at Debesis Education UK and Associate Lecturer (Research) at the University of Derby, UK. He also holds positions as Foreign Professor at NUST and IIU in Islamabad, Pakistan, and Professor Extraordinaire at the North West University Potchefstroom, South Africa. Prof. Mahmood is a certified cloud computing instructor and a regular speaker at international conferences devoted to Cloud Computing and E-Government. His specialized areas of research include distributed computing, project management, and e-government. Among his many publications are the Springer titles Cloud Computing: Challenges, Limitations and R&D SolutionsContinued Rise of the CloudCloud Computing: Methods and Practical ApproachesSoftware Engineering Frameworks for the Cloud Computing Paradigm, and Cloud Computing for Enterprise Architectures.


Textul de pe ultima copertă

This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by an authoritative collection of thirty-six researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics.
Topics and features:
  • Reviews a framework for fast data applications, a technique for complex event processing, and a selection of agglomerative approaches for partitioning of networks
  • Discusses a big data approach to identifying minimum-sized influential vertices from large-scale weighted graphs
  • Introduces a unified approach to data modeling and management, and offers a distributed computing perspective on interfacing physical and cyber worlds
  • Presents techniques for machine learning in the context of big data, and describes an analytics-driven approach to identifying duplicate records in large data repositories
  • Examines various enabling technologies and tools for data mining, including Apache Hadoop
  • Proposes a novel framework for data extraction and knowledge discovery, and provides case studies on adaptive decision making and social media analysis
This comprehensive volume is a valuable reference for researchers, lecturers and students interested in data science and big data, in addition to professionals seeking to adopt the latest approaches in data analytics to gain business intelligence for strategic decision-making.

Caracteristici

Reviews the latest research and practice in data science and big data Discusses tools and techniques for big data storage and analytics Describes the frameworks relevant to data science, and their application