Data Science for the Geosciences
Autor Lijing Wang, David Zhen Yin, Jef Caersen Limba Engleză Paperback – 16 aug 2023
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 313.75 lei 3-5 săpt. | +31.15 lei 7-13 zile |
Cambridge University Press – 16 aug 2023 | 313.75 lei 3-5 săpt. | +31.15 lei 7-13 zile |
Hardback (1) | 723.94 lei 6-8 săpt. | |
Cambridge University Press – 16 aug 2023 | 723.94 lei 6-8 săpt. |
Preț: 313.75 lei
Nou
Puncte Express: 471
Preț estimativ în valută:
60.06€ • 62.43$ • 49.80£
60.06€ • 62.43$ • 49.80£
Carte disponibilă
Livrare economică 18 ianuarie-01 februarie 25
Livrare express 04-10 ianuarie 25 pentru 41.14 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009201407
ISBN-10: 1009201409
Pagini: 250
Dimensiuni: 203 x 253 x 14 mm
Greutate: 0.67 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1009201409
Pagini: 250
Dimensiuni: 203 x 253 x 14 mm
Greutate: 0.67 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
Cuprins
1. Extreme value statistics; 2. Multi-variate analysis; 3. Spatial data aggregation; 4. Geostatistics; 5. Review of mathematical and statistical concepts.
Recenzii
'Literacy in data science and machine learning methods is a necessity for the modern geoscientist. This is an accessible yet thorough overview of key data science topics and their applications. It uses real-world case studies from a variety of geoscientific disciplines and is a valuable resource for students, practitioners, and instructors alike.' Emma Mackie, University of Florida
'This condensate of essential notions to deal with data typically found in geoscience offers a great toolbox for students who must perform analysis of big data that are spatially distributed or multivariate, or for the estimation of extreme events.' Grégoire Mariethoz, University of Lausanne
'This condensate of essential notions to deal with data typically found in geoscience offers a great toolbox for students who must perform analysis of big data that are spatially distributed or multivariate, or for the estimation of extreme events.' Grégoire Mariethoz, University of Lausanne
Notă biografică
Descriere
An accessible text providing data science foundations to address earth science questions using real-world case studies.