Deep Learning for Data Analytics: Foundations, Biomedical Applications, and Challenges
Editat de Himansu Das, Chittaranjan Pradhan, Nilanjan Deyen Limba Engleză Paperback – 31 mai 2020
- Presents the latest advances in Deep Learning for data analytics and biomedical engineering applications.
- Discusses Deep Learning techniques as they are being applied in the real world of biomedical engineering and data science, including Deep Learning networks, deep feature learning, deep learning toolboxes, performance evaluation, Deep Learning optimization, deep auto-encoders, and deep neural networks
- Provides readers with an introduction to Deep Learning, along with coverage of deep belief networks, convolutional neural networks, Restricted Boltzmann Machines, data analytics basics, enterprise data science, predictive analysis, optimization for Deep Learning, and feature selection using Deep Learning
Preț: 800.76 lei
Preț vechi: 997.13 lei
-20% Nou
Puncte Express: 1201
Preț estimativ în valută:
153.26€ • 161.68$ • 127.72£
153.26€ • 161.68$ • 127.72£
Carte tipărită la comandă
Livrare economică 26 decembrie 24 - 09 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128197646
ISBN-10: 0128197641
Pagini: 218
Dimensiuni: 191 x 235 mm
Greutate: 0.39 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128197641
Pagini: 218
Dimensiuni: 191 x 235 mm
Greutate: 0.39 kg
Editura: ELSEVIER SCIENCE
Public țintă
Computer/data scientists, biomedical engineers, researchers and software engineers in the areas of deep learning, data analytics, big data, and intelligent systems; research scientists and practitioners in medical and biological sciencesCuprins
Section I Deep Learning Basics and Mathematical Background 1. Introduction to Deep Learning 2. Probability and information Theory 3. Deep Learning Basics 4. Deep Architectures 5. Deep Auto-Encoders 6. Multilayer Perceptron 7. Artificial Neural Network 8. Deep Neural Network 9. Deep Belief Network 10. Recurrent Neural Networks 11. Convolutional Neural Networks 12. Restricted Boltzmann Machines
Section II Deep Learning in Data Science 13. Data Analytics Basics 14. Enterprise Data Science 15. Predictive Analysis 16. Scalability of deep learning methods 17. Statistical learning for mining and analysis of big data 18. Computational Intelligence Methodology for Data Science 19. Optimization for deep learning (e.g. model structure optimization, large-scale optimization, hyper-parameter optimization, etc) 20. Feature selection using deep learning 21. Novel methodologies using deep learning for classification, detection and segmentation
Section III Deep Learning in Engineering Applications 22. Deep Learning for Pattern Recognition 23. Deep Learning for Biomedical Engineering 24. Deep Learning for Image Processing 25. Deep Learning for Image Classification 26. Deep Learning for Medical Image Recognition 27. Deep learning for Remote Sensing image processing 28. Deep Learning for Image and Video Retrieval 29. Deep Learning for Visual Saliency 30. Deep Learning for Visual Understanding 31. Deep Learning for Visual Tracking 32. Deep Learning for Object Segmentation and Shape Models 33. Deep Learning for Object Detection and Recognition 34. Deep Learning for Human Actions Recognition 35. Deep Learning for Facial Recognition 36. Deep Learning for Scene Understanding 37. Deep Learning for Internet of Things 38. Deep Learning for Big Data Analytics 39. Deep Learning for Clinical and Health Informatics 40. Deep Learning foe Sentiment Analysis
Section II Deep Learning in Data Science 13. Data Analytics Basics 14. Enterprise Data Science 15. Predictive Analysis 16. Scalability of deep learning methods 17. Statistical learning for mining and analysis of big data 18. Computational Intelligence Methodology for Data Science 19. Optimization for deep learning (e.g. model structure optimization, large-scale optimization, hyper-parameter optimization, etc) 20. Feature selection using deep learning 21. Novel methodologies using deep learning for classification, detection and segmentation
Section III Deep Learning in Engineering Applications 22. Deep Learning for Pattern Recognition 23. Deep Learning for Biomedical Engineering 24. Deep Learning for Image Processing 25. Deep Learning for Image Classification 26. Deep Learning for Medical Image Recognition 27. Deep learning for Remote Sensing image processing 28. Deep Learning for Image and Video Retrieval 29. Deep Learning for Visual Saliency 30. Deep Learning for Visual Understanding 31. Deep Learning for Visual Tracking 32. Deep Learning for Object Segmentation and Shape Models 33. Deep Learning for Object Detection and Recognition 34. Deep Learning for Human Actions Recognition 35. Deep Learning for Facial Recognition 36. Deep Learning for Scene Understanding 37. Deep Learning for Internet of Things 38. Deep Learning for Big Data Analytics 39. Deep Learning for Clinical and Health Informatics 40. Deep Learning foe Sentiment Analysis