Deep Learning for Unmanned Systems: Studies in Computational Intelligence, cartea 984
Editat de Anis Koubaa, Ahmad Taher Azaren Limba Engleză Paperback – 3 oct 2022
In recent years, deep learning research has received an increasing amount of attention from researchers in academia, government laboratories and industry. These research activities have borne some fruit in tackling some of the challenging problems of manned and unmanned ground, aerial and marine vehicles that are still open. Moreover, deep learning methods have been recently actively developed in other areas of machine learning, including reinforcement training and transfer/meta-learning, whereas standard, deep learning methods such as recent neural network (RNN) and coevolutionary neural networks (CNN).
The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science.
- The book chapters deal with the recent research problems in the areas of reinforcement learning-based control of UAVs and deep learning for unmanned aerial systems (UAS)
- The book chapters present various techniques of deep learning for robotic applications.
- The book chapters contain a good literature survey with a long list of references.
- The book chapters are well written with a good exposition of the research problem, methodology, block diagrams and mathematical techniques.
- The book chapters are lucidly illustrated with numerical examples and simulations.
- The book chapters discuss details of applications and future research areas.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1390.81 lei 6-8 săpt. | |
Springer International Publishing – 3 oct 2022 | 1390.81 lei 6-8 săpt. | |
Hardback (1) | 1397.24 lei 6-8 săpt. | |
Springer International Publishing – 2 oct 2021 | 1397.24 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 20% Preț: 1149.72 lei
- 20% Preț: 979.38 lei
- 20% Preț: 1442.03 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1104.09 lei
- 20% Preț: 565.38 lei
- 20% Preț: 644.49 lei
- 20% Preț: 1039.99 lei
- 20% Preț: 1567.29 lei
- 20% Preț: 638.76 lei
- 20% Preț: 652.66 lei
- 20% Preț: 985.95 lei
- 20% Preț: 983.49 lei
- 20% Preț: 982.67 lei
- 20% Preț: 1157.08 lei
- 20% Preț: 1433.84 lei
- 20% Preț: 1034.27 lei
- 20% Preț: 1039.99 lei
- 20% Preț: 1038.35 lei
- 18% Preț: 2482.01 lei
- 20% Preț: 981.84 lei
- 20% Preț: 1157.08 lei
- 20% Preț: 1155.44 lei
- 20% Preț: 1035.10 lei
- 20% Preț: 1449.39 lei
- 18% Preț: 1393.16 lei
- 18% Preț: 1116.60 lei
- 20% Preț: 1031.80 lei
- 20% Preț: 1000.67 lei
- 20% Preț: 1037.55 lei
- 20% Preț: 1265.99 lei
- 20% Preț: 1032.63 lei
- 20% Preț: 981.05 lei
- 20% Preț: 1161.15 lei
- 20% Preț: 1153.80 lei
- 20% Preț: 1051.45 lei
- 20% Preț: 1155.44 lei
- 20% Preț: 1157.91 lei
- 20% Preț: 1448.60 lei
- 18% Preț: 998.33 lei
- 20% Preț: 990.03 lei
- 20% Preț: 1048.16 lei
- 20% Preț: 1274.98 lei
- 20% Preț: 986.74 lei
- 20% Preț: 1040.98 lei
- 20% Preț: 936.82 lei
- 20% Preț: 1164.44 lei
- 20% Preț: 1446.94 lei
- 20% Preț: 1037.55 lei
Preț: 1390.81 lei
Preț vechi: 1696.11 lei
-18% Nou
Puncte Express: 2086
Preț estimativ în valută:
266.37€ • 274.43$ • 223.13£
266.37€ • 274.43$ • 223.13£
Carte tipărită la comandă
Livrare economică 22 februarie-08 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030779412
ISBN-10: 3030779416
Pagini: 732
Ilustrații: VIII, 732 p. 363 illus., 281 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.02 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030779416
Pagini: 732
Ilustrații: VIII, 732 p. 363 illus., 281 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.02 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Deep Learning for Unmanned Autonomous Vehicles: A Comprehensive Review.- Deep Learning and Reinforcement Learning for Autonomous Unmanned Aerial Systems: Roadmap for Theory to Deployment.- Reactive Obstacle Avoidance Method for a UAV.- Guaranteed Performances for Learning-Based Control Systems using Robust Control Theory.- A cascaded deep Neural Network for Position Estimation of Industrial Robots.- Managing Deep Learning Uncertainty for Autonomous Systems.- Uncertainty-Aware Autonomous Mobile Robot Navigation with Deep Reinforcement Learning.- Deep Reinforcement Learning for Autonomous Mobile Networks in Micro-Grids.- Reinforcement learning for Autonomous Morphing Control and Cooperative Operations of UAV Cluster.- Image-Based Identification of Animal Breeds Using Deep Learning.
Textul de pe ultima copertă
This book is used at the graduate or advanced undergraduate level and many others. Manned and unmanned ground, aerial and marine vehicles enable many promising and revolutionary civilian and military applications that will change our life in the near future. These applications include, but are not limited to, surveillance, search and rescue, environment monitoring, infrastructure monitoring, self-driving cars, contactless last-mile delivery vehicles, autonomous ships, precision agriculture and transmission line inspection to name just a few. These vehicles will benefit from advances of deep learning as a subfield of machine learning able to endow these vehicles with different capability such as perception, situation awareness, planning and intelligent control. Deep learning models also have the ability to generate actionable insights into the complex structures of large data sets.
In recent years, deep learning research has received an increasing amount of attention from researchers in academia, government laboratories and industry. These research activities have borne some fruit in tackling some of the challenging problems of manned and unmanned ground, aerial and marine vehicles that are still open. Moreover, deep learning methods have been recently actively developed in other areas of machine learning, including reinforcement training and transfer/meta-learning, whereas standard, deep learning methods such as recent neural network (RNN) and coevolutionary neural networks (CNN).
The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science.
The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science.
- The book chapters deal with the recent research problems in the areas of reinforcement learning-based control of UAVs and deep learning for unmanned aerial systems (UAS)
- The book chapters present various techniques of deep learning for robotic applications.
- The book chapters contain a good literature survey with a long list of references.
- The book chapters are well written with a good exposition of the research problem, methodology, block diagrams and mathematical techniques.
- The book chapters are lucidly illustrated with numerical examples and simulations.
- The book chapters discuss details of applications and future research areas.
Caracteristici
Investigates the latest Deep Learning applications in theoretical and practical fields of for any unmanned system, robot, drone, underwater, etc. Includes selected and extended high-quality papers related to application of Deep Learning for Unmanned Systems from the Smart Systems and Emerging Technologies conference (SMARTTECH 2020) which was held at Prince Sultan University, Riyadh, Saudi Arabia, during November 3–5, 2020 Discusses different applications of Deep Learning in drones where Computational Intelligence methods have excellent potentials for use