Cantitate/Preț
Produs

Deep Learning Techniques for Biomedical and Health Informatics

Editat de Basant Agarwal, Valentina Emilia Balas, Lakhmi C. Jain, Ramesh Chandra Poonia, Manisha Sharma
en Limba Engleză Paperback – 13 ian 2020
Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing.


  • Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring
  • Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making
  • Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis
Citește tot Restrânge

Preț: 71669 lei

Preț vechi: 94140 lei
-24% Nou

Puncte Express: 1075

Preț estimativ în valută:
13716 14560$ 11429£

Carte tipărită la comandă

Livrare economică 20 decembrie 24 - 03 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780128190616
ISBN-10: 0128190612
Pagini: 367
Dimensiuni: 191 x 235 x 19 mm
Greutate: 0.63 kg
Editura: ELSEVIER SCIENCE

Public țintă

Biomedical engineers, researchers in data analytics, Big Data, health care management and intelligent systems.

Cuprins

Part I: Deep Learning for Biomedical Engineering and Health Informatics 1. Introduction to Deep Learning and Health Informatics 2. A survey on deep learning algorithms for biomedical engineering 3. Machine learning and deep learning for Biomedical and Health Informatics 4. Deep learning for bioinformatics and drug discovery 5. Deep learning for Clinical Decision Support Systems 6. Deep learning for efficient Patients disease diagnosis and monitoring systems 7. Deep learning based methods for the Prediction of disease 8. Deep learning / Convolutional Neural Networks for Lung Pattern Analysis 9. Recommender systems for Biomedical and Health informatics
Part II: Deep Learning and Electronics Health Records 10. Deep Learning with Electronic Health Records (EHR) 11. Health Data Structures and Management 12. Deep Patient Similarity Learning with EHR 13. Natural Language Processing, Electronic Health Records, and Clinical Research 14. Healthcare Informatics to analyze patient health records to enable better clinical decision making and improved healthcare outcomes
Part III: Deep Learning for Medical Image Processing 15. Machine Learning in Bio-medical Signal and Medical image processing 16. Deep Learning for Medical Image Recognition 17. Unsupervised Deep Feature Representations Learning for Bio-medical Image analysis 18. Deep learning for optimizing medical big data 19. Deep learning for Brain Image Analysis 20. Deep Learning for Automated Brain Tumor Segmentation in MRI Images 21. Deep Learning and the Future of Biomedical Image Analysis