Density Ratio Estimation in Machine Learning
Autor Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamorien Limba Engleză Paperback – 28 mar 2018
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 290.44 lei 6-8 săpt. | |
Cambridge University Press – 28 mar 2018 | 290.44 lei 6-8 săpt. | |
Hardback (1) | 864.64 lei 6-8 săpt. | |
Cambridge University Press – 19 feb 2012 | 864.64 lei 6-8 săpt. |
Preț: 290.44 lei
Preț vechi: 363.05 lei
-20% Nou
Puncte Express: 436
Preț estimativ în valută:
55.58€ • 57.34$ • 47.04£
55.58€ • 57.34$ • 47.04£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781108461733
ISBN-10: 1108461735
Pagini: 341
Ilustrații: 79 b/w illus. 18 tables
Dimensiuni: 153 x 230 x 18 mm
Greutate: 0.48 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1108461735
Pagini: 341
Ilustrații: 79 b/w illus. 18 tables
Dimensiuni: 153 x 230 x 18 mm
Greutate: 0.48 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Part I. Density Ratio Approach to Machine Learning: 1. Introduction; Part II. Methods of Density Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction; Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation; Part IV. Theoretical Analysis of Density Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis; Part V. Conclusions: 17. Conclusions and future directions.
Recenzii
'There is no doubt that this book will change the way people think about machine learning and stimulate many new directions for research.' Thomas G. Dietterich, from the Foreword
Notă biografică
Descriere
This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.