Cantitate/Preț
Produs

Die Erforschung des Chaos: Studienbuch für Naturwissenschaftler und Ingenieure

Autor John H. Argyris, Gunter Faust, Maria Haase
de Limba Germană Paperback – 14 apr 1995

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 39132 lei  6-8 săpt.
  Vieweg+Teubner Verlag – aug 2012 39132 lei  6-8 săpt.
  Vieweg+Teubner Verlag – 14 apr 1995 53020 lei  6-8 săpt.

Preț: 53020 lei

Preț vechi: 62376 lei
-15% Nou

Puncte Express: 795

Preț estimativ în valută:
10147 10468$ 8588£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783528066857
ISBN-10: 3528066857
Pagini: 790
Ilustrații: XXII, 790 S. 340 Abb., 86 Abb. in Farbe.
Dimensiuni: 170 x 244 x 41 mm
Greutate: 1.28 kg
Ediția:1995
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany

Public țintă

Upper undergraduate

Cuprins

1 Einführung.- 2 Hintergrund und Motivation.- 2.1 Kausalität — Determinismus.- 2.2 Dynamische Systeme — Beispiele.- 2.3 Phasenraum.- 2.4 Erste Integrale und Mannigfaltigkeiten.- 2.5 Qualitative und quantitative Betrachtungsweise.- 3 Mathematische Einführung in dynamische Systeme.- 3.1 Lineare autonome Systeme.- 3.2 Nichtlineare Systeme und Stabilität.- 3.3 Invariante Mannigfaltigkeiten.- 3.4 Diskretisierung in der Zeit.- 3.5 Poincaré-Abbildung.- 3.6 Fixpunkte und Zyklen diskreter Systeme.- 3.7 Ein Beispiel diskreter Dynamik — die logistische Abbildung.- 4 Dynamische Systeme ohne Dissipation.- 4.1 Hamiltonsche Gleichungen.- 4.2 Kanonische Transformationen, Integrierbarkeit.- 4.3 f-dimensionale Ringe (Tori) und Trajektorien.- 4.4 Die Grundzüge der KAM-Theorie.- 4.5 Instabile Tori, chaotische Bereiche.- 4.6 Ein numerisches Beispiel: die Hénon-Abbildung.- 5 Dynamische Systeme mit Dissipation.- 5.1 Volumenkontraktion — eine wesentliche Eigenschaft dissipativer Systeme.- 5.2 Seltsamer Attraktor: Lorenz-Attraktor.- 5.3 Leistungsspektrum und Autokorrelation.- 5.4 Lyapunov-Exponenten.- 5.5 Dimensionen.- 5.6 Kolmogorov-Sinai-Entropie.- 6 Lokale Bifurkationstheorie.- 6.1 Motivation.- 6.2 Zentrumsmannigfaltigkeit.- 6.3 Normalformen.- 6.4 Normalformen von Verzweigungen einparametriger Flüsse.- 6.5 Stabilität von Verzweigungen infolge Störungen.- 6.6 Verzweigungen von Fixpunkten einparametriger Abbildungen.- 6.7 Renormierung und Selbstähnlichkeit am Beispiel der logistischen Abbildung.- 6.8 Ein beschreibender Exkurs in die Synergetik.- 7 Konvektionsströmungen: Bénard-Problem.- 7.1 Hydrodynamische Grundgleichungen.- 7.2 Boussinesq-Oberbeck-Approximation.- 7.3 Lorenz-Modell.- 7.4 Entwicklung des Lorenz-Systems.- 8 Wege zur Turbulenz.- 8.1 Landau-Szenario.- 8.2Ruelle-Takens-Szenario.- 8.3 Universelle Eigenschaften des Übergangs von Quasiperiodizität zu Chaos.- 8.4 Die Feigenbaum-Route über Periodenverdopplungen ins Chaos.- 8.5 Quasiperiodischer Übergang bei fester Windungszahl.- 8.6 Der Weg über Intermittenz ins Chaos.- 8.7 Wege aus dem Chaos, Steuerung des Chaos.- 9 Computerexperimente.- 9.1 Einblick in Knochenumbauprozesse.- 9.2 Hénon-Abbildung.- 9.3 Wiederbegegnung mit dem Lorenz-System.- 9.4 Van der Polsche Gleichung.- 9.5 Duffing-Gleichung.- 9.6 Julia-Mengen und ihr Ordnungsprinzip.- 9.7 Struktur der Arnol’d-Zungen.- 9.8 Zur Kinetik chemischer Reaktionen an Einkristall-Oberflächen.- 9.9 Ein Überblick über chaotisches Verhalten in unserem Sonnensystem.- Farbtafeln.- Literatur.

Notă biografică

Prof. em. Dr. Dr. h. c. mult. John Argyris ist Direktor des Instituts für Computer-Anwendungen an der Universität Stuttgart.