Cantitate/Preț
Produs

Differential and Integral Equations

Autor Peter J. Collins
en Limba Engleză Hardback – 2 aug 2006
Descriere de la o altă ediție sau format:
Differential and integral equations involve important mathematical techniques, and as such will be encountered by mathematicians, and physical and social scientists, in their undergraduate courses. This text provides a clear, comprehensive guide to first- and second-order ordinary and partial differential equations, whilst introducing important and useful basic material on integral equations. Readers will encounter detailed discussion of the wave, heat and Laplace equations, of Green's functions and their application to the Sturm-Liouville equation, and how to use series solutions, transform methods and phase-plane analysis. The calculus of variations will take them further into the world of applied analysis.Providing a wealth of techniques, but yet satisfying the needs of the pure mathematician, and with numerous carefully worked examples and exercises, the text is ideal for any undergraduate with basic calculus to gain a thorough grounding in 'analysis for applications'.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 41193 lei  31-37 zile
  OUP OXFORD – 3 aug 2006 41193 lei  31-37 zile
Hardback (1) 110230 lei  31-37 zile
  OUP OXFORD – 2 aug 2006 110230 lei  31-37 zile

Preț: 110230 lei

Preț vechi: 158099 lei
-30% Nou

Puncte Express: 1653

Preț estimativ în valută:
21102 21702$ 17506£

Carte tipărită la comandă

Livrare economică 05-11 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780198533825
ISBN-10: 0198533829
Pagini: 381
Dimensiuni: 195 x 254 x 26 mm
Greutate: 0.91 kg
Editura: OUP OXFORD
Colecția OUP Oxford
Locul publicării:Oxford, United Kingdom

Recenzii

The text is a valuable source of information on classical and modern methods of applied mathematics and is warmly recommended to mathematiians and non-mathematicians both as a textbook and as an easily accessible reference on the subject