Differential Equations: Springer Series in Soviet Mathematics
Autor A.N. Tikhonov Traducere de A. B. Sossinskij Autor A. B. Vasil'eva, A. G. Sveshnikoven Limba Engleză Paperback – mar 1985
Preț: 379.18 lei
Nou
Puncte Express: 569
Preț estimativ în valută:
72.57€ • 75.60$ • 60.34£
72.57€ • 75.60$ • 60.34£
Carte tipărită la comandă
Livrare economică 10-24 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540130024
ISBN-10: 3540130020
Pagini: 252
Ilustrații: VIII, 240 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Soviet Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540130020
Pagini: 252
Ilustrații: VIII, 240 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Soviet Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Introduction.- § 1. The Concept of a Differential Equation.- § 2. Physical Problems Leading to Differential Equations.- II. General Theory.- § 1. Elementary Integration Methods.- § 2. Theorems on the Existence and Uniqueness of the Solution of the Initial Value Problem for a First Order Equation Resolved with Respect to the Derivative. The Euler Polygonal Line Algorithm.- § 3. Equations not Resolved with Respect to the Derivative.- § 4. Existence and Uniqueness Theorems for the Solution of Normal Systems.- § 5. Dependence of Solutions on Initial Values and Parameters.- § 6. The Method of Successive Approximations (Picard’s Method).- § 7. The Contraction Mapping Theorem.- III. Linear Differential Equations.- § 1. The Pendulum Equation as an Example of a Linear Equation. The Main Properties of Linear Equations with Constant Coefficients.- § 2. General Properties of n-th Order Equations.- § 3. Homogeneous n-th Order Linear Equations.- § 4. Non-homogeneous Linear n-th Order Equations.-§ 5. Linear n-th Order Equations with Constant Coefficients.- § 6. Systems of Linear Equations. General Theory.- § 7. Systems of Linear Differential Equations with Constant Coefficients.- § 8. The Solutions in Power Series Form of Linear Equations.- IV. Boundary Value Problems.- § 1. Formulation of Boundary Value Problems and their Physical Meaning.- § 2. Non-homogeneous Boundary Value Problems.- § 3. Eigenvalue Problems.- V. Stability Theory.- § 1. Statement of the Problem.- § 2. Study of Stability in the First Approximation.- § 3. The Method of Lyapunov Functions.- § 4. The Study of Trajectories in a Neighbourhood of a Stationary Point.- VI. Numerical Methods for the Solution of Ordinary Differential Equations.- § 1. Numerical Methods for Solving Initial Value Problems.- § 2. Boundary Value Problems.- VII. Asymptotics of Solutions of Differential Equations with Respect to a Small Parameter.- § 1. Regular Perturbations.- § 2. Singular Perturbations.- VIII. First Order Partial Differential Equations.- § 1. Linear Equations.- § 2. Quasilinear Equations.