Fourier Analysis and Nonlinear Partial Differential Equations: Grundlehren der mathematischen Wissenschaften, cartea 343
Autor Hajer Bahouri, Jean-Yves Chemin, Raphaël Danchinen Limba Engleză Paperback – 25 feb 2013
It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 694.42 lei 43-57 zile | |
Springer Berlin, Heidelberg – 25 feb 2013 | 694.42 lei 43-57 zile | |
Hardback (1) | 941.30 lei 43-57 zile | |
Springer Berlin, Heidelberg – 5 ian 2011 | 941.30 lei 43-57 zile |
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 18% Preț: 723.26 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 584.63 lei
- 15% Preț: 700.05 lei
- Preț: 333.01 lei
- 15% Preț: 463.61 lei
- Preț: 349.35 lei
- Preț: 474.65 lei
- 15% Preț: 443.67 lei
- Preț: 447.46 lei
- 15% Preț: 694.42 lei
- Preț: 414.57 lei
- 15% Preț: 435.33 lei
- 15% Preț: 517.16 lei
- 15% Preț: 577.75 lei
- Preț: 346.30 lei
- 18% Preț: 712.93 lei
- Preț: 380.17 lei
- 15% Preț: 445.58 lei
- 15% Preț: 471.31 lei
- Preț: 455.19 lei
- Preț: 341.78 lei
- Preț: 354.78 lei
- Preț: 478.30 lei
- 15% Preț: 438.54 lei
- Preț: 411.37 lei
- Preț: 380.72 lei
- Preț: 410.79 lei
- 15% Preț: 569.27 lei
- Preț: 487.73 lei
- Preț: 353.28 lei
- Preț: 379.96 lei
- Preț: 411.37 lei
- 18% Preț: 711.07 lei
- Preț: 444.63 lei
- Preț: 378.63 lei
- Preț: 352.33 lei
Preț: 694.42 lei
Preț vechi: 816.96 lei
-15% Nou
Puncte Express: 1042
Preț estimativ în valută:
132.90€ • 138.05$ • 110.39£
132.90€ • 138.05$ • 110.39£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642266577
ISBN-10: 3642266576
Pagini: 540
Ilustrații: XVI, 524 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.75 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642266576
Pagini: 540
Ilustrații: XVI, 524 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.75 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Preface.- 1. Basic analysis.- 2. Littlewood-Paley theory.- 3. Transport and transport-diffusion equations.- 4. Quasilinear symmetric systems.- 5. Incompressible Navier-Stokes system.- 6. Anisotropic viscosity.- 7. Euler system for perfect incompressible fluids.- 8. Strichartz estimates and applications to semilinear dispersive equations.- 9. Smoothing effect in quasilinear wave equations.- 10.- The compressible Navier-Stokes system.- References. - List of notations.- Index.
Recenzii
From the reviews:
“The authors did make impressive contributions to a broad area of fluid dynamics. It is the first time that a coherent presentation of those research results is available, which will give easier access to the whole area to a broader audience. … It is a valuable contribution in the important area of the interest of the authors and will without question find its place in the mathematical libraries, and on the shelves of people working in those areas.” (Herbert Koch, Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. 115, 2014)
“The aim of the present monograph is to introduce methods from Fourier analysis, and in particular techniques based on the Littlewood–Paley decomposition, for the solution of nonlinear partial differential equations. … The presentation is fairly self-contained and only requires a solid background in measure theory and functional analysis. It will be of value to both graduate students and researchers interested in application of Fourier analysis to partial differential equations.” (G. Teschl, Monatshefte für Mathematik, Vol. 165 (3-4), March, 2012)
“This book is a well-written introduction to Fourier analysis, Littlewood-Paley theory and some of their applications to the theory of evolution equations. It is suitable for readers with a solid undergraduate background in analysis. A feature that distinguishes it from other books of this sort is its emphasis on using Littlewood-Paley decomposition to study nonlinear differential equations. … the references, historical background, and discussion of possible future developments at the end of each chapter are very convenient for its readers.” (Lijing Sun, Zentralblatt MATH, Vol. 1227, 2012)
“This book intends to prepare the reader how to apply tools from Fourier analysis to directly solve problems arising in the theory of non linear partial differential equations. … The presentation is well structured andeasy to follow. … This is a textbook for advanced undergraduate or beginning graduate students with a good background in real and functional analysis. … even active researchers or mathematicians interested in the application of Fourier-analytic tools will find this book very useful.” (Peter R. Massopust, Mathematical Reviews, Issue 2011 m)
“The authors did make impressive contributions to a broad area of fluid dynamics. It is the first time that a coherent presentation of those research results is available, which will give easier access to the whole area to a broader audience. … It is a valuable contribution in the important area of the interest of the authors and will without question find its place in the mathematical libraries, and on the shelves of people working in those areas.” (Herbert Koch, Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. 115, 2014)
“The aim of the present monograph is to introduce methods from Fourier analysis, and in particular techniques based on the Littlewood–Paley decomposition, for the solution of nonlinear partial differential equations. … The presentation is fairly self-contained and only requires a solid background in measure theory and functional analysis. It will be of value to both graduate students and researchers interested in application of Fourier analysis to partial differential equations.” (G. Teschl, Monatshefte für Mathematik, Vol. 165 (3-4), March, 2012)
“This book is a well-written introduction to Fourier analysis, Littlewood-Paley theory and some of their applications to the theory of evolution equations. It is suitable for readers with a solid undergraduate background in analysis. A feature that distinguishes it from other books of this sort is its emphasis on using Littlewood-Paley decomposition to study nonlinear differential equations. … the references, historical background, and discussion of possible future developments at the end of each chapter are very convenient for its readers.” (Lijing Sun, Zentralblatt MATH, Vol. 1227, 2012)
“This book intends to prepare the reader how to apply tools from Fourier analysis to directly solve problems arising in the theory of non linear partial differential equations. … The presentation is well structured andeasy to follow. … This is a textbook for advanced undergraduate or beginning graduate students with a good background in real and functional analysis. … even active researchers or mathematicians interested in the application of Fourier-analytic tools will find this book very useful.” (Peter R. Massopust, Mathematical Reviews, Issue 2011 m)
Textul de pe ultima copertă
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity.
It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Caracteristici
First accessible work giving an exhaustive and up-to-date presentation of how to use Fourier analysis to study PDEs. Written by experts in the field of Fourier analysis, this work presents a self-contained state of the art of techniques with applications to different classes of PDEs. Both accessible to anyone with a good undergraduate level in analysis, as well as to experts and researchers. Includes supplementary material: sn.pub/extras