Percolation: Grundlehren der mathematischen Wissenschaften, cartea 321
Autor Geoffrey R. Grimmetten Limba Engleză Paperback – 6 dec 2010
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 766.41 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 6 dec 2010 | 766.41 lei 6-8 săpt. | |
Hardback (1) | 770.71 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 6 mai 1999 | 770.71 lei 6-8 săpt. |
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.82 lei
- 18% Preț: 717.05 lei
- Preț: 410.20 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.72 lei
- 20% Preț: 753.23 lei
- 20% Preț: 824.72 lei
- 24% Preț: 632.96 lei
- Preț: 338.53 lei
- 15% Preț: 579.62 lei
- 14% Preț: 702.18 lei
- Preț: 333.01 lei
- 15% Preț: 459.64 lei
- Preț: 346.37 lei
- Preț: 470.61 lei
- 15% Preț: 439.87 lei
- Preț: 443.65 lei
- 15% Preț: 688.45 lei
- Preț: 411.02 lei
- 15% Preț: 431.60 lei
- 15% Preț: 512.72 lei
- 15% Preț: 572.79 lei
- Preț: 343.36 lei
- 18% Preț: 706.81 lei
- Preț: 376.93 lei
- 15% Preț: 441.77 lei
- 15% Preț: 467.27 lei
- Preț: 451.30 lei
- Preț: 338.87 lei
- Preț: 351.77 lei
- Preț: 474.20 lei
- 15% Preț: 434.79 lei
- Preț: 407.85 lei
- Preț: 377.45 lei
- Preț: 407.27 lei
- 15% Preț: 564.39 lei
- Preț: 483.55 lei
- Preț: 350.29 lei
- Preț: 376.72 lei
- Preț: 407.85 lei
- 18% Preț: 704.95 lei
- Preț: 440.84 lei
- Preț: 375.40 lei
- Preț: 349.34 lei
Preț: 766.41 lei
Preț vechi: 934.65 lei
-18% Nou
Puncte Express: 1150
Preț estimativ în valută:
146.67€ • 153.81$ • 122.30£
146.67€ • 153.81$ • 122.30£
Carte tipărită la comandă
Livrare economică 07-21 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642084423
ISBN-10: 3642084427
Pagini: 464
Ilustrații: XIII, 447 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of hardcover 2nd ed. 1999
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642084427
Pagini: 464
Ilustrații: XIII, 447 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of hardcover 2nd ed. 1999
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 What is Percolation?.- 2 Some Basic Techniques.- 3 Critical Probabilities.- 4 The Number of Open Clusters per Vertex.- 5 Exponential Decay.- 6 The Subcritical Phase.- 7 Dynamic and Static Renormalization.- 8 The Supercritical Phase.- 9 Near the Critical Point: Scaling Theory.- 10 Near the Critical Point: Rigorous Results.- 11 Bond Percolation in Two Dimensions.- 12 Extensions of Percolation.- 13 Percolative Systems.- Appendix I. The Infinite-Volume Limit for Percolation.- Appendix II. The Subadditive Inequality.- List of Notation.- References.- Index of Names.
Textul de pe ultima copertă
Percolation theory is the study of an idealized random medium in two or more dimensions. It is a cornerstone of the theory of spatial stochastic processes with applications in such fields as statistical physics, epidemiology, and the spread of populations. Percolation plays a pivotal role in studying more complex systems exhibiting phase transition. The mathematical theory is mature, but continues to give rise to problems of special beauty and difficulty. The emphasis of this book is upon core mathematical material and the presentation of the shortest and most accessible proofs. The book is intended for graduate students and researchers in probability and mathematical physics. Almost no specialist knowledge is assumed beyond undergraduate analysis and probability. This new volume differs substantially from the first edition through the inclusion of much new material, including: the rigorous theory of dynamic and static renormalization; a sketch of the lace expansion and mean field theory; the uniqueness of the infinite cluster; strict inequalities between critical probabilities; several essays on related fields and applications; numerous other results of significant. There is a summary of the hypotheses of conformal invariance. A principal feature of the process is the phase transition. The subcritical and supercritical phases are studied in detail. There is a guide for mathematicians to the physical theory of scaling and critical exponents, together with selected material describing the current state of the rigorous theory. To derive a rigorous theory of the phase transition remains an outstanding and beautiful problem of mathematics.
Caracteristici
Includes supplementary material: sn.pub/extras