The Differential Geometry of Finsler Spaces: Grundlehren der mathematischen Wissenschaften, cartea 101
Autor Hanno Runden Limba Engleză Paperback – 19 mai 2012
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 18% Preț: 710.26 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- 20% Preț: 753.24 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- Preț: 338.54 lei
- 15% Preț: 574.15 lei
- 14% Preț: 695.55 lei
- Preț: 333.01 lei
- 15% Preț: 455.32 lei
- Preț: 343.12 lei
- Preț: 466.19 lei
- 15% Preț: 435.73 lei
- Preț: 439.49 lei
- 15% Preț: 681.96 lei
- Preț: 407.17 lei
- 15% Preț: 427.54 lei
- 15% Preț: 567.39 lei
- Preț: 340.15 lei
- 18% Preț: 700.13 lei
- Preț: 373.39 lei
- 15% Preț: 437.60 lei
- 15% Preț: 462.88 lei
- Preț: 447.07 lei
- Preț: 335.70 lei
- Preț: 348.46 lei
- Preț: 469.75 lei
- 15% Preț: 430.69 lei
- Preț: 404.02 lei
- Preț: 373.93 lei
- Preț: 403.45 lei
- 15% Preț: 559.06 lei
- Preț: 479.01 lei
- Preț: 346.99 lei
- Preț: 373.19 lei
- Preț: 404.02 lei
- 18% Preț: 698.28 lei
- Preț: 436.71 lei
- Preț: 371.88 lei
- Preț: 346.06 lei
Preț: 507.89 lei
Preț vechi: 597.51 lei
-15% Nou
Puncte Express: 762
Preț estimativ în valută:
97.20€ • 102.54$ • 81.00£
97.20€ • 102.54$ • 81.00£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642516122
ISBN-10: 3642516122
Pagini: 304
Ilustrații: XV, 284 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 1959
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642516122
Pagini: 304
Ilustrații: XV, 284 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 1959
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I: Calculus of Variations. Minkowskian Spaces.- § 1. Problems in the calculus of variations in parametric form.- § 2. The tangent space. The indicatrix.- § 3. The metric tensor and the osculating indicatrix.- § 4. The dual tangent space. The figuratrix.- § 5. The Hamiltonian function.- § 6. The trigonometric functions and orthogonality.- § 7. Definitions of angle.- § 8. Area and Volume.- II: Geodesics: Covariant Differentiation.- § 1. The differential equations satisfied by the geodesics.- § 2. The explicit expression for the second derivatives in the differential equations of the geodesies.- § 3. The differential of a vector.- § 4. Partial differentiation of vectors.- § 5. Elementary properties of ?-differentiation.- III: The “Euclidean Connection” of E. Cartan.- § 1. The fundamental postulates of Cartan.- § 2. Properties of the covariant derivative.- § 3. The general geometry of paths: the connection of Berwald.- § 4. Further connections arising from the general geometry of paths.- § 5. The osculating Riemannian space.- § 6. Normal coordinates.- IV: The Theory of Curvature.- § 1. The commutation formulae.- § 2. Identities satisfied by the curvature tensors.- § 3. The Bianchi identities.- §4. Geodesic deviation Ill.- § 5. The first and second variations of the length integral.- § 6. The curvature tensors arising from Berwald’s connection.- § 7. Spaces of constant curvature.- § 8. The projective curvature tensors.- V: The Theory of Subspaces.- § 1. The theory of curves.- § 2. The projection factors.- § 3. The induced connection parameters.;.- § 4. Fundamental aspects of the theory of subspaces based on the euclidean connection.- § 5. The Lie derivative and its application to the theory of subspaces.- § 6. Surfaces imbedded in anF3.- § 7. Fundamental aspects of the theory of subspaces from the point of view of the locally Minkowskian metric.- § 8. The differential geometry of the indicatrix and the geometrical significance of the tensor Sijhk.- § 9. Comparison between the induced and the intrinsic connection parameters.- VI: Miscellaneous Topics.- § 1. Groups of motions.- § 2. Conformai geometry.- § 3. The equivalence problem.- § 4. The theory of non-linear connections.- § 5. The local imbedding theories.- § 6. Two-dimensional Finsler spaces.- Appendix: Bibliographical references to related topics.- Symbols.