Hilbertsche Räume mit Kernfunktion: Grundlehren der mathematischen Wissenschaften, cartea 113
Autor Herbert Meschkowskide Limba Germană Paperback – 22 feb 2012
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 18% Preț: 710.26 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- 20% Preț: 753.24 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- Preț: 338.54 lei
- 15% Preț: 574.15 lei
- 14% Preț: 695.55 lei
- Preț: 333.01 lei
- 15% Preț: 455.32 lei
- Preț: 343.12 lei
- Preț: 466.19 lei
- 15% Preț: 435.73 lei
- Preț: 439.49 lei
- 15% Preț: 681.96 lei
- Preț: 407.17 lei
- 15% Preț: 427.54 lei
- 15% Preț: 507.89 lei
- 15% Preț: 567.39 lei
- Preț: 340.15 lei
- 18% Preț: 700.13 lei
- Preț: 373.39 lei
- 15% Preț: 437.60 lei
- 15% Preț: 462.88 lei
- Preț: 447.07 lei
- Preț: 335.70 lei
- Preț: 348.46 lei
- Preț: 469.75 lei
- 15% Preț: 430.69 lei
- Preț: 373.93 lei
- Preț: 403.45 lei
- 15% Preț: 559.06 lei
- Preț: 479.01 lei
- Preț: 346.99 lei
- Preț: 373.19 lei
- Preț: 404.02 lei
- 18% Preț: 698.28 lei
- Preț: 436.71 lei
- Preț: 371.88 lei
- Preț: 346.06 lei
Preț: 404.02 lei
Nou
Puncte Express: 606
Preț estimativ în valută:
77.32€ • 81.57$ • 64.44£
77.32€ • 81.57$ • 64.44£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642948497
ISBN-10: 3642948499
Pagini: 268
Ilustrații: VIII, 260 S.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.38 kg
Ediția:Softcover reprint of the original 1st ed. 1962
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642948499
Pagini: 268
Ilustrații: VIII, 260 S.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.38 kg
Ediția:Softcover reprint of the original 1st ed. 1962
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Erstes Kapitel. Einleitung.- Zweites Kapitel. Allgemeine Eigenschaften der Hilbertschen Räume.- § 1. Definitionen.- § 2. Die Orthogonalisierung.- §3. Abgeschlossenheit und Vollständigkeit.- § 4. Separierbarkeit von Hilbertschen Räumen.- § 5. Beispiele.- § 6. Unterräume.- § 7. Lineare Funktionale.- § 8. Lineare Operatoren.- § 9. Eigenwertprobleme für vollstetige Operatoren.- §10. Der Wurzeloperator für symmetrische positive Operatoren.- Drittes Kapitel. Der reproduzierende Kern.- § 1. Grundlegende Eigenschaften.- § 2. Separierbarkeit von Räumen mit Kernfunktion.- § 3. Operatoren in Räumen mit Kernfunktion.- § 4. Ergänzung unvollständiger Räume.- § 5. Vollständige Systeme.- Viertes Kapitel. Beispiele von Hilbertschen Räumen mit reproduzierendem Kern.- § 1. Integralsätze.- § 2. Die Bergmansche Kernfunktion.- § 3. Der reproduzierende Kern für Lösungsfunktionen von partiellen Differentialgleichungen.- § 4. Der Bergman-Kern und die Green-Funktion.- § 5. Approximierung durch rationale Funktionen.- § 6. Der reproduzierende Kern für harmonische Funktionen.- § 7. Der Szegö-Kern.- § 8. Der Bergman-Kern für Funktionen mit mehreren Veränderlichen..- § 9. Die Abhängigkeit der Funktion K(x, x) vom Gebiet.- Fünftes Kapitel. Die Hilbert-Räume positiver Matrizen.- § 1. Positive Matrizen.- § 2. Die Summe zweier Kernfunktionen.- § 3. Die Differenz von Kernen.- § 4. Das Produkt zweier Kernfunktionen.- § 5. Konvergente Folgen von Kernfunktionen.- Sechstes Kapitel. Orthonormalsysteme mit speziellen Eigenschaften.- §1. Interpolation bei endlich vielen Punkten.- § 2. Abzählbar viele Interpolationspunkte.- § 3. Eine Eigenschaft des Bergman-Systems.- § 4. Orthogonalisierung mit Gewichtsfunktionen.- Siebentes Kapitel. Normalabbildungen.- §1. Die Parallelschlitzabbildung.- §2. Die Radial-und Kreisschlitzabbildung.- §3. Die Abbildung auf einen beschränkten Kreisschlitzbereich.- § 4. Beschränkte Funktionen.- § 5. Der Bildbereich von N(z, u).- Achtes Kapitel. Die Darstellung von Funktionen.- § 1. Szegö-Systeme für Funktionen mit Polen.- §2. Darstellung durch Bergman-Systeme.- § 3. Das Poisson-Integral für mehrfach zusammenhängende Bereiche.- §. Weitere Verallgemeinerungen l6l.- § 5. Darstellung durch den Randwinkel.- § 6. Darstellung durch Kerne mit Gewichtsfunktion.- § 7. Abbildung auf den Einheitskreis.- Neuntes Kapitel. Extremalprobleme.- § 1. Eine Eigenschaft der Funktion N’m (z, u).- § 2. Verzerrungssätze für schlichte Funktionen.- §3. Verallgemeinerung des Bieberbachschen Flächensatzes.- § 4. Extremalsätze für den Szegö-Kern.- § 5. Schlichtheitsschranken.- §6. Abschätzung von Restgliedern.- Zehntes Kapitel. Doppelte Orthogonalität.- § 1. Beispiele für vollstetige Operatoren in den Räumen HS und H(B).- § 2. Die zweite Orthogonalitätsrelation.- § 3. Die Vielfachheit des ersten Eigenwertes.- § 4. Eigenschaften quadratischer Formen.- § 5. Beispiele und Verallgemeinerungen.- § 6. Typen von Orthonormalsystemen.- § 7. Ein Approximationsproblem.- § 8. Eigenschaften der Transformation T(B) f.- Elftes Kapitel. Hilbert-Räume aus Lösungen elliptischer Differentialgleichungen.- §1. Definition eines inneren Produktes.- § 2. Hilfssätze.- § 3. Randwertprobleme.- § 4. Fundamentale Singularitäten.- § 5. Die Kernfunktion.- Zwölftes Kapitel. Kernfunktionen in der Theorie der Funktionen von mehreren komplexen Veränderlichen.- § 1. Definitionen und grundlegende Sätze.- § 2. Anwendung der Kernfunktion.- § 3. Minimalbereiche.- §4. Kernfunktion und Hüllenbildung.-§ 5. Die analytische Fortsetzung quadratintegrabler Funktionen.- § 6. Kern und Außenhülle.- § 7. Die allgemeine Bergmansche Metrik und ihre Fortsetzbarkeit.- Namen- und Sachregister.