Cantitate/Preț
Produs

Die Grundlagen der Theorie der Markoffschen Prozesse: Grundlehren der mathematischen Wissenschaften, cartea 108

Autor Evgenij Borisovic Dynkin Traducere de Josef Wloka
de Limba Germană Paperback – 22 feb 2012

Din seria Grundlehren der mathematischen Wissenschaften

Preț: 34877 lei

Nou

Puncte Express: 523

Preț estimativ în valută:
6675 6943$ 5594£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642948176
ISBN-10: 3642948170
Pagini: 188
Ilustrații: XII, 174 S. 1 Abb.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.27 kg
Ediția:Softcover reprint of the original 1st ed. 1961
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Erstes Kapitel Einführung.- § 1 Maßräume und meßbare Abbildungen.- § 2 Maße und Integrale.- § 3 Bedingte Wahrscheinlichkeiten und mathematische Erwartungen.- § 4 Topologische Maßräume.- § 5 Konstruktion von Wahrscheinlichkeitsmaßen.- Zweites Kapitel Markoffsche Prozesse.- § 1 Definition eines Markoffschen Prozesses.- § 2 Homogene Markoffsche Prozesse.- § 3 Äquivalente Markoffsche Prozesse.- Drittes Kapitel Unterprozesse.- § 1 Definition von Unterprozessen. Zusammenhang zwischen Unterprozessen und multiplikativen Funktionalen.- § 2 Unterprozesse, die zulässigen Untermengen entsprechen. Bildung von Prozeßteilen.- § 3 Unterprozesse, die zulässigen Untermengensystemen entsprechen.- § 4 Die multiplikativen Funktionale vom integralen Typ und die ihnen entsprechenden Unterprozesse.- § 5 Homogene Unterprozesse von homogenen Markoffschen Prozessen.- Viertes Kapitel Die Konstruktion Markoffscher Prozesse aus Übergangsfunktionen.- § 1 Definitionen und Beispiele von Übergangsfunktionen.- § 2 Die Konstruktion Markoffscher Prozesse aus Übergangsfunktionen.- § 3 Homogene Übergangsfunktionen und die ihnen entsprechenden homogenen Markoffschen Prozesse.- Fünftes Kapitel Streng Markoffsche Prozesse.- § 1 Zufallsgrößen, die vom Zukünftigen und s-Vergangenen unabhängig sind. Lemmata über die Meßbarkeit.- § 2 Definition eines streng Markoffschen Prozesses.- § 3 Homogene streng Markoffsche Prozesse.- § 4 Abgeschwächte Formen der streng Markoffschen Bedingung für rechtsseitig stetige Markoffsche Prozesse.- § 5 Die streng Markoffsehe Eigenschaft von Unterprozessen.- § 6 Kriterien für die streng Markoffsche Eigenschaft.- Sechstes Kapitel Beschränktheits- und Stetigkeitsbedingungen eines Markoffschen Prozesses.- § 1 Einleitung.- § 2Beschränktheitsbedingungen.- § 3 Bedingungen für die rechtsseitige Stetigkeit und das Fehlen von Unstetig-keiten zweiter Art.- § 4 Sprung- und treppenartige Prozesse.- § 5 Stetigkeitsbedingungen.- § 6 Bedingungen für die linksseitige Quasistetigkeit.- § 7 Beispiele.- Berichtigungen.- § 1 Satz über die Kapazitätserweiterung.- Historisch-bibliographische Noten.- Literatur.- Verzeichnis der Lehrsätze und Lemmata.- Verzeichnis der Zeichen.