Differential Geometry and Lie Groups: A Second Course: Geometry and Computing, cartea 13
Autor Jean Gallier, Jocelyn Quaintanceen Limba Engleză Paperback – 19 aug 2021
Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraic conclusion, which can be seen as a generalized viewpoint of the quaternions.
Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 440.98 lei 6-8 săpt. | |
Springer International Publishing – 19 aug 2021 | 440.98 lei 6-8 săpt. | |
Springer International Publishing – 16 aug 2021 | 458.90 lei 39-44 zile | |
Hardback (2) | 459.29 lei 39-44 zile | |
Springer International Publishing – 19 aug 2020 | 459.29 lei 39-44 zile | |
Springer International Publishing – 15 aug 2020 | 473.53 lei 39-44 zile |
Preț: 440.98 lei
Nou
Puncte Express: 661
Preț estimativ în valută:
84.39€ • 88.21$ • 71.31£
84.39€ • 88.21$ • 71.31£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030460495
ISBN-10: 3030460495
Pagini: 620
Ilustrații: XIV, 620 p. 110 illus., 32 illus. in color.
Dimensiuni: 155 x 235 x 36 mm
Greutate: 0.88 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Geometry and Computing
Locul publicării:Cham, Switzerland
ISBN-10: 3030460495
Pagini: 620
Ilustrații: XIV, 620 p. 110 illus., 32 illus. in color.
Dimensiuni: 155 x 235 x 36 mm
Greutate: 0.88 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Geometry and Computing
Locul publicării:Cham, Switzerland
Cuprins
1. Tensor Algebras.- 2. Exterior Tensor Powers and Exterior Algebras.- 3. Differential Forms.- 4. Distributions and the Frobenius Theorem.- 5. Integration on Manifolds.- 6. Spherical Harmonics and Linear Representations.- 7. Operators on Riemannian Manifolds.- 8. Bundles, Metrics on Bundles, Homogeneous Spaces.- 9. Connections and Curvature in Vector Bundles.- 10. Clifford Algebras, Clifford Groups, Pin and Spin.
Notă biografică
Jean Gallier is Professor of Computer and Information Science at the University of Pennsylvania, Philadelphia. His research interests include geometry and its applications, geometric modeling, and differential geometry. He is also a member of the University of Pennsylvania’s Department of Mathematics, and its Center for Human Modelling and Simulation.
Jocelyn Quaintance is postdoctoral researcher at the University of Pennsylvania who has contributed to the fields of combinatorial identities and power product expansions. Her recent mathematical books investigate the interplay between mathematics and computer science. Covering areas as diverse as differential geometry, linear algebra, optimization theory, and Fourier analysis, her writing illuminates the mathematics behind topics relevant to engineering, computer vision, and robotics.
Jocelyn Quaintance is postdoctoral researcher at the University of Pennsylvania who has contributed to the fields of combinatorial identities and power product expansions. Her recent mathematical books investigate the interplay between mathematics and computer science. Covering areas as diverse as differential geometry, linear algebra, optimization theory, and Fourier analysis, her writing illuminates the mathematics behind topics relevant to engineering, computer vision, and robotics.
Textul de pe ultima copertă
This textbook explores advanced topics in differential geometry, chosen for their particular relevance to modern geometry processing. Analytic and algebraic perspectives augment core topics, with the authors taking care to motivate each new concept. Whether working toward theoretical or applied questions, readers will appreciate this accessible exploration of the mathematical concepts behind many modern applications.
Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraicconclusion, which can be seen as a generalized viewpoint of the quaternions.
Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.
Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraicconclusion, which can be seen as a generalized viewpoint of the quaternions.
Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.
Caracteristici
Explores the advanced mathematical theory behind modern geometry processing Offers a uniquely accessible approach that is suitable for students and professionals alike Augments core topics in advanced differential geometry with analytic and algebraic perspectives Includes exercises throughout that are suitable for class use or independent study
Recenzii
“The book … is intended ‘for a wide audience ranging from upper undergraduate to advanced graduate students in mathematics, physics, and more broadly engineering students, especially in computer science.’ … The text’s coverage is extensive, its exposition clear throughout, and the color illustrations helpful. The authors are also familiar with many texts at a comparable level and have drawn on them in several places to include some of the most insightful proofs already in the literature.” (Jer-Chin Chuang, MAA Reviews, October 4, 2021)