Dimensionality Reducing Expansion of Multivariate Integration
Autor Tian-Xiao Heen Limba Engleză Hardback – 30 mar 2001
Key features of this self-contained monograph include:
* fine exposition covering the history of the subject
* up-to-date new results, related to many fields of current research such as boundary element methods for solving PDEs and wavelet analysis
* presentation of DRE techniques using a broad array of examples
* good balance between theory and application
* coverage of such related topics as boundary type quadratures and asymptotic expansions of oscillatory integrals
* excellent and comprehensive bibliography and index
This work will appeal to a broad audience of students and researchers in pure and applied mathematics, statistics, and physics, and can be used in a graduate/advanced undergraduate course or as a standard reference text.
Toate formatele și edițiile
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 385.08 lei 6-8 săpt. | |
Birkhäuser Boston – 30 sep 2011 | 385.08 lei 6-8 săpt. | |
Hardback (1) | 390.63 lei 6-8 săpt. | |
Birkhäuser Boston – 30 mar 2001 | 390.63 lei 6-8 săpt. |
Preț: 390.63 lei
Nou
Puncte Express: 586
Preț estimativ în valută:
74.75€ • 78.25$ • 61.85£
74.75€ • 78.25$ • 61.85£
Carte tipărită la comandă
Livrare economică 07-21 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817641702
ISBN-10: 081764170X
Pagini: 227
Ilustrații: XI, 227 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.48 kg
Ediția:2001
Editura: Birkhäuser Boston
Colecția Birkhäuser
Locul publicării:Boston, MA, United States
ISBN-10: 081764170X
Pagini: 227
Ilustrații: XI, 227 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.48 kg
Ediția:2001
Editura: Birkhäuser Boston
Colecția Birkhäuser
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
1 Dimensionality Reducing Expansion of Multivariate Integration.- 1.1 Darboux formulas and their special forms.- 1.2 Generalized integration by parts rule.- 1.3 DREs with algebraic precision.- 1.4 Minimum estimation of remainders in DREs with algebraic precision.- 2 Boundary Type Quadrature Formulas with Algebraic Precision.- 2.1 Construction of BTQFs using DREs.- 2.2 BTQFs with homogeneous precision.- 2.3 Numerical integration associated with wavelet functions.- 2.4 Some applications of DREs and BTQFs.- 2.5 BTQFs over axially symmetric regions.- 3 The Integration and DREs of Rapidly Oscillating Functions.- 3.1 DREs for approximating a double integral.- 3.2 Basic lemma.- 3.3 DREs with large parameters.- 3.4 Basic expansion theorem for integrals with large parameters.- 3.5 Asymptotic expansion formulas for oscillatory integrals with singular factors.- 4 Numerical Quadrature Formulas Associated with the Integration of Rapidly Oscillating Functions.- 4.1 Numerical quadrature formulas of double integrals.- 4.2 Numerical integration of oscillatory integrals.- 4.3 Numerical quadrature of strongly oscillatory integrals with compound precision.- 4.4 Fast numerical computations of oscillatory integrals.- 4.5 DRE construction and numerical integration using measure theory.- 4.6 Error analysis of numerical integration.- 5 DREs Over Complex Domains.- 5.1 DREs of the double integrals of analytic functions.- 5.2 Construction of quadrature formulas using DREs.- 5.3 Integral regions suitable for DREs.- 5.4 Additional topics.- 6 Exact DREs Associated With Differential Equations.- 6.1 DREs and ordinary differential equations.- 6.2 DREs and partial differential equations.- 6.3 Applications of DREs in the construction of BTQFs.- 6.4 Applications of DREs in the boundary element method.