Cantitate/Preț
Produs

Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programming: Chapman & Hall/CRC Textbooks in Computing

Autor Jessen Havill
en Limba Engleză Paperback – 28 oct 2020
"Havill's problem-driven approach introduces algorithmic concepts in context and motivates students with a wide range of interests and backgrounds."
-- Janet Davis, Associate Professor and Microsoft Chair of Computer Science, Whitman College
"This book looks really great and takes exactly the approach I think should be used for a CS 1 course. I think it really fills a need in the textbook landscape."
--Marie desJardins, Dean of the College of Organizational, Computational, and Information Sciences, Simmons University
"Discovering Computer Science is a refreshing departure from introductory programming texts, offering students a much more sincere introduction to the breadth and complexity of this ever-growing field."
--James Deverick, Senior Lecturer, The College of William and Mary
"This unique introduction to the science of computing guides students through broad and universal approaches to problem solving in a variety of contexts and their ultimate implementation as computer programs."
--Daniel Kaplan, DeWitt Wallace Professor, Macalester College
Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programmingis a problem-oriented introduction to computational problem solving and programming in Python, appropriate for a first course for computer science majors, a more targeted disciplinary computing course or, at a slower pace, any introductory computer science course for a general audience.
Realizing that an organization around language features only resonates with a narrow audience, this textbook instead connects programming to students’ prior interests using a range of authentic problems from the natural and social sciences and the digital humanities. The presentation begins with an introduction to the problem-solving process, contextualizing programming as an essential component. Then, as the book progresses, each chapter guides students through solutions to increasingly complex problems, using a spiral approach to introduce Python language features.
The text also places programming in the context of fundamental computer science principles, such as abstraction, efficiency, testing, and algorithmic techniques, offering glimpses of topics that are traditionally put off until later courses.
This book contains 30 well-developed independent projects that encourage students to explore questions across disciplinary boundaries, over 750 homework exercises, and 300 integrated reflection questions engage students in problem solving and active reading.
The accompanying website — https://www.discoveringcs.net — includes more advanced content, solutions to selected exercises, sample code and data files, and pointers for further exploration.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61434 lei  6-8 săpt.
  CRC Press – 28 oct 2020 61434 lei  6-8 săpt.
Hardback (1) 127296 lei  6-8 săpt.
  CRC Press – 28 oct 2020 127296 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Textbooks in Computing

Preț: 61434 lei

Preț vechi: 76793 lei
-20% Nou

Puncte Express: 922

Preț estimativ în valută:
11758 12118$ 9927£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367472498
ISBN-10: 036747249X
Pagini: 542
Ilustrații: N/A; 5 Tables, color
Dimensiuni: 178 x 254 x 25 mm
Greutate: 1.13 kg
Ediția:Nouă
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Textbooks in Computing


Cuprins

Preface                                                                            
Acknowledgments                                                         
About the author                                                           
How to Solve It                                             
UNDERSTAND THE PROBLEM                                        
DESIGN AN ALGORITHM                                                  
WRITE A PROGRAM                                                        
LOOK BACK                                                                      
SUMMARY AND FURTHER DISCOVERY                       
Visualizing Abstraction                                 
DATA ABSTRACTION                                                      
DRAWING FLOWERS AND PLOTTING EARTHQUAKES 
FUNCTIONAL ABSTRACTION 
PROGRAMMING IN STYLE 
A RETURN TO FUNCTIONS 
SCOPE AND NAMESPACES
SUMMARY AND FURTHER DISCOVERY 
Inside a Computer                                                                                       
COMPUTERS ARE DUMB 
EVERYTHING IS BITS
COMPUTER ARITHMETIC 
BINARY ARITHMETIC          
THE UNIVERSAL MACHINE 
Growth and Decay                                                                                      
ACCUMULATORS 
DATA VISUALIZATION 
CONDITIONAL ITERATION 
CONTINUOUS MODELS           
NUMERICAL ANALYSIS          
SUMMING UP                                                                 
FURTHER DISCOVERY                                                 
PROJECTS           
Forks in the Road                                       
RANDOM WALKS                                                           
PSEUDORANDOM NUMBER GENERATORS           
SIMULATING PROBABILITY DISTRIBUTIONS           
BACK TO BOOLEANS 
DEFENSIVE PROGRAMMING 
GUESS MY NUMBER 
SUMMARY AND FURTHER DISCOVERY 
PROJECTS        
 
Text, Documents, and DNA                                                                                        FIRST STEPS 
TEXT DOCUMENTS
A CONCORDANCE
WORD FREQUENCY TRENDS
COMPARING TEXTS
 TIME COMPLEXITY
 COMPUTATIONAL GENOMICS          
SUMMARY AND FURTHER DISCOVERY                     
PROJECTS            
Data Analysis                                              SUMMARY STATISTICS                                               
WRANGLING DATA                                                       
TALLYING FREQUENCIES 
READING TABULAR DATA 
DESIGNING EFFICIENT ALGORITHMS        
LINEAR REGRESSION           
DATA CLUSTERING         
SUMMARY AND FURTHER DISCOVERY                    
PROJECTS           
Flatland                                                      TABULAR DATA                                                           
THE GAME OF LIFE                                                      
DIGITAL IMAGES                                                          
SUMMARY AND FURTHER DISCOVERY                     
PROJECTS         
Self-similarity and Recursion                      
FRACTALS                                                                     
RECURSION AND ITERATION                                     
 THE MYTHICAL TOWER OF HANOI                        
RECURSIVE LINEAR SEARCH                                       
DIVIDE AND CONQUER                                                
LINDENMAYER SYSTEMS           
9SUMMARY AND FURTHER DISCOVERY         
PROJECTS          
 
Organizing Data                                                                                        BINARY SEARCH          
SELECTION SORT
INSERTION SORT
EFFICIENT SORTING
TRACTABLE AND INTRACTABLE ALGORITHMS
SUMMARY AND FURTHER DISCOVERY           
PROJECTS            
Networks                                                    MODELING WITH GRAPHS                                           
SHORTEST PATHS                                                         
IT’S A SMALL WORLD                                       
RANDOM GRAPHS                                                        
SUMMARY AND FURTHER DISCOVERY                     
PROJECTS            
Object-oriented Design                 
SIMULATING AN EPIDEMIC                                       OPERATORS AND POLYMORPHISM                        
A FLOCKING SIMULATION            
A STACK ADT            
A DICTIONARY ADT           
SUMMARY AND FURTHER DISCOVERY                     
PROJECTS            
 
Bibliography                                                                                      
Appendix A ■ Python Library 
Appendix B ■ Selected Exercise
Index                                                                                      

Notă biografică

Jessen Havill is a Professor of Computer Science at Denison University. He has been teaching courses across the computer science curriculum for almost thirty years, and was awarded the College's highest teaching honor, the Charles A. Brickman Teaching Excellence Award, in 2013.  Although his primary expertise is in the development and analysis of online algorithms, Dr. Havill has spent many years collaborating with colleagues across the curriculum to develop interdisciplinary academic opportunities for students.  From 2016-2019, he became the founding Director of Denison University's interdisciplinary Data Analytics program. Dr. Havill earned his bachelor's degree from Bucknell University and his Ph.D. in computer science from The College of William and Mary.

Recenzii

“Havill's problem-driven approach introduces algorithmic concepts in context and motivates students with a wide range of interests and backgrounds.”
-- Janet Davis, Associate Professor and Microsoft Chair of Computer Science, Whitman College 
“This book looks really great and takes exactly the approach I think should be used for a CS 1 course. I think it really fills a need in the textbook landscape.”
-- Marie desJardins, Dean of the College of Organizational, Computational, and Information Sciences, Simmons University
“Havill's broad and applications-driven introduction gives students a strong foundation as they begin to explore our field. Topics that students will study in more depth in later courses are introduced in context along a path of discovery for the fundamentals and breadth of computing. Problem solving paradigms and the structures to implement and test their results are presented as intuitive solutions to real-world problems like DNA sequencing and social network analysis, empowering the reader to understand why programming structures exist and how to use them to solve problems effectively and efficiently. Discovering Computer Science is a refreshing departure from introductory programming texts, offering students a much more sincere introduction to the breadth and complexity of this ever-growing field.”
-- James Deverick, Senior Lecturer, The College of William and Mary
“Programming is an essential skill of modern problem solving. But students can gain traction on authentic problems only when they have learned to model, decompose, approximate, and recompose real-world systems into a form suited to computing. This unique introduction to the science of computing guides students through broad and universal approaches to problem solving in a variety of contexts and their ultimate implementation as computer programs.”
-- Daniel Kaplan, DeWitt Wallace Professor, Macalester College

Descriere

Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programming introduces computational problem solving as a vehicle of discovery in a wide variety of disciplines.